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Abstract
Browser fingerprinting is a major security concern on
the modern web. It allows remote servers to collect
information about devices and identify them across
website boundaries. We discuss how dynamic taint
analysis can be used to mitigate common fingerprint-
ing methods. We also build extensible software to ex-
plore various taint tracking approaches for identifying
and preventing browser fingerprinting. In particular,
we implemented a Chrome extension that blocks all
connections from a tab that has previously accessed
sensitive data and demonstrate how such preventa-
tive measures can be embedded into the browser ker-
nel via a simple code modification.

1 Introduction
Modern browsers have to balance complex function-
ality and privacy requirements to serve users. Unfor-
tunately, much of the functionality added in recent
years yields a large surface area for fingerprinting and
cross-site tracking, which compromises user privacy.
The Electric Frontier Foundation’s Panopticlick pro-
vides a concrete list of common ways to fingerprint a
browser through modern web technologies, a combi-
nation of which can even generate unique identifiers
for most users [2]. In 2010, Peter Eckersley from the
Electronic Frontier Foundation collected 470,161 fin-
gerprints using data from HTTP headers, JavaScript,
and plugins and showed 83.6% of them were unique
[10]. Unique fingerprints can be used to track activ-
ity across multiple sessions without user consent or
knowledge [20], which can then be used for advertis-
ing or malicious purposes.

Recently, there has been a large movement to pro-
tect users from trackers that use browser fingerprint-
ing, but no solution is complete yet. Preventing
browser fingerprinting while preserving the website
functionality has proven to be a difficult challenge.
The goal of this project is to develop potential coun-

termeasures to browser fingerprinting while leaving a
user’s experience on the web unchanged to the great-
est extent possible.

2 Background
Three common approaches used to defend against
browser fingerprinting today are blocking the execu-
tion of fingerprinting scripts, breaking the stability
of fingerprints, and breaking the uniqueness of fin-
gerprints [27]. We discuss each of them briefly below.

Blocking JavaScript execution prevents servers
from collecting data accessible through DOM APIs,
greatly limiting trackers. However, this approach also
blocks scripts that are necessary to display a website
and load dynamic content, so it interferes with user
experience. Although some implementations let users
select “trustworthy” sites that would allow scripts to
run [23], this approach is generally prone to over-
blocking.

Therefore, a common alternative way to block fin-
gerprinting scripts is to selectively block network re-
quests (fetch, XMLHttpRequest) matching certain
filter lists. This prevents trackers in the filter lists
from collecting sensitive data about a user’s browser.
One of the most commonly used lists is provided by
EasyPrivacy, which aims to remove all bugs, track-
ing systems, and information collectors [11]. How-
ever, such lists are not complete, and new tracking
systems are developed continuously.

Some approaches defend against fingerprinting by
heuristically learning which sources to block. The
EFF’s Privacy Badger keeps track of third-party do-
mains that embed elements into the websites a user
visits and disallows content from a remote domain
once it tries to track the user’s browser on three dif-
ferent websites [12]. However, Privacy Badger can
often be too aggressive in blocking, preventing neces-
sary elements of a web page from functioning [20].

Another approach to defend against browser fin-
gerprinting is breaking the stability of fingerprints.
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This solution frequently modifies a device’s finger-
prints in a way that a device’s old fingerprints can-
not be linked to new fingerprints. While fingerprints
can still remain unique, third parties will have more
difficulty tracking a device employing this defense for
an extended period of time. Initially, there was con-
cern that such modified fingerprints were ‘unnatural’
and thus could be used for additional identification
purposes [27], but attempts have since evolved. For
example, PriVaricator uses randomization of the font
and plugin related properties to make it difficult for a
third party to link fingerprints of the same user, but
guarantees the resulting fingerprints do not stand out
in any way [25]. However, these approaches tend to
have incomplete coverage since trackers can still use
other identifying sources of information for browser
tracking.

The third method for defending against browser
fingerprinting is breaking the uniqueness of finger-
prints. Trackers cannot use a browser’s fingerprint to
track devices if fingerprints are not unique. Hence,
some countermeasures for browser fingerprinting aim
to issue non-unique fingerprints for all devices. For
example, Tor aims to issue identical fingerprints for
all of its users [9]. However, Tor still does not com-
pletely block fingerprinting since the Tor fingerprint
is brittle, and the fact that Tor is being used can still
be seen as a piece of identifying information [20].

Therefore, our goal in this project is to present and
analyze several approaches for preventing browser
fingerprinting in a recent version of Chromium, fo-
cusing on both browser-specific methods like exten-
sion blocking, as well as inter-process communication
(IPC) between the content-handling processes and
the browser kernel. This allows us to record which
sensitive information makes its way into web requests
and potentially even block requests that contain such
sensitive information.

3 DTA Blocking
Our first approach is based on dynamic taint analy-
sis (DTA). We use the libdft tool for dynamic taint
tracking through a binary [19]. Taint sinks can be
marked in inter-process communication or other crit-
ical paths in the JavaScript engine. We take advan-
tage of the architecture of web browsers in isolating
render processes from the kernel, which is responsible
for network requests.

For a starter list of tainted user data, we will
use the Electronic Frontier Foundation’s Cover Your
Tracks list, which includes identifiers like system lan-
guage, screen resolution, available fonts, and various

browser-specific behaviors. By tracking taint through
the system, we will be able to produce a thorough list
of mechanisms through which malicious web servers
can glean private information, which may even in-
clude attacks that have not yet been revealed by less
rigorous methods.

3.1 Dynamic Taint Analysis
Dynamic taint analysis is implemented through the
libdft tool, which was introduced in [19]. At a high
level, this tool allows you to attach hooks to certain
procedures (system calls and functions) that mark
taint. Then, an unmodified binary is instrumented
through Intel’s Pin tool, which allows the dynamic
taint analyzer to track propagation at the binary in-
struction level.

The original libdft tool was built in 2012 and only
works for 32-bit x86 binaries. However, since the vast
majority of modern Intel processors are 64-bit, we
instead based our work on a modified version called
libdft64 that is maintained and developed for the
Angora Fuzzer [4]. This allows us to dynamically
instrument x86-64 binaries using the latest version of
Intel Pin 3.7.

As a simple example, we use libdft64 to imple-
ment a Pintool that attaches taint value 42 to the
argument of a C-like function set_taint(void *p)
by writing the following C++ code:

VOID SetHandler(void *p) {
tag_t t = tag_alloc<tag_t>(42);
tagmap_setb((ADDRINT)p, t);
printf("addr: %p", p);

}

/* excerpt from PIN_Init(...) handler */
RTN rtn = RTN_FindByName(img, "_set_taint");
if (RTN_Valid(rtn)) {
RTN_Open(rtn);
RTN_InsertCall(
rtn, IPOINT_BEFORE, (AFUNPTR)SetHandler,
IARG_FUNCARG_ENTRYPOINT_VALUE, 0,
IARG_END,

);
RTN_Close(rtn);

}

Similar methods can be used to attach taint-tracking
instrumentation to Linux system calls, such as open,
socket, and read, to mark certain inter-process com-
munication modes as a taint source or taint sink. We
can also use these hooks to read propagated taint
tags. When sensitive taint reaches a sink, the tool
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can then log or block sensitive requests while running
the binary.

The primary advantage of Pintool-based dynamic
taint analysis over systems that modify the browser
kernel is that Pintools do not require the user to
download a modified, unsigned resesarch prototype
binary. Instead, they can be dynamically attached to
instrument running processes on the computer, which
allows patching of a running version of Chrome with-
out installing a separate forked binary. This also
has benefits for security researchers, since cloning
and compiling the monolithic Chrome kernel requires
Google’s vendor-specific depot_tools library, over
17 GB of code and dependencies, a modern C++
toolchain, and over 20 CPU-hours of build time.1
This is inconvenient for short-term patches.

In comparison, the requirements to run a Pintool
are simply to install the code of Intel Pin 3.7 from a
publicly hosted .tar.gz file, then attach the Pintool
to running instances of Chrome’s render processes
whenever they are available. This avoids having to
change the application binary. Some Pintools may
not run on different platforms (IA-32, x86-64), but
the convenience of installation makes them suitable
for research and security testing on a wide variety of
machines, if not for wide distribution.

3.2 Design of a Selective Blocker
In this section, we discuss the theoretical design of
a dynamic taint analyzer for selective blocking of
requests containing sensitive information. We also
briefly outline some of the practical challenges of
building such a taint analyzer, due to implementa-
tion specifics of the monolithic Chrome browser.

In general, we can selectively block requests by con-
ducting a thorough taint analysis of the binary mem-
ory space. Formally, call data at a memory address
tainted if it is at least partially dependent on some
sensitive data we would like to protect from finger-
printing, such as the browser’s User-Agent string,
or the details of its <canvas> rendering context im-
plementation (which depends on the system graphics
drivers). Other potential taint sources are listed in
Fig. 1. The goal of a selective blocker is to limit the
potential spread of tainted data across the network
to third-party servers who can then use that data to
perform cross-site tracking of users.

Our proposed design for a taint-based blocker com-
bines three primary components: sources, sinks, and
additional script scaffolding.

1Furthermore, if you accelerate builds with a tool like
ccache, it may require hundreds of GB of free disk space.

3.2.1 Taint Sources

We attach hooks to Chrome’s inter-process com-
munication handles that inform the render process
of sensitive user details. Because of the flexibil-
ity of libdft64, it suffices to determine the symbol
names of critical paths that are responsible for ob-
taining data like time zones, graphics drivers, and
other sensitive information. This does not have to
be entirely reverse-engineered, since the Chromium
source code and toolchain are both open source,
which makes finding the proper symbols a mat-
ter of carefully reading through the source code.
Once the taint source is found (either as a func-
tion or system call), their arguments can be accessed
by using the IARG_FUNCARG_ENTRYPOINT_VALUE and
X64_ARG#_REG descriptors, passed as variadic argu-
ments to the RTN_InsertCall(...) API.

3.2.2 Taint Sinks

When tainted information is introduced to the ren-
der process, we request libdft to add a taint tag
to a specific memory address p using the function
tagmap_setb(ADDRINT p, tag_t t). Then, Intel
Pin is used to track the propagation of this taint,
based on a binary decision diagram (BDD) data
structure, while the program is executing.

Since we add this taint information, we also need a
hooks on functions that might leak sensitive tainted
data. These are known as taint sinks, and they work
in a similar way using the RTN_InsertCall(...)
and syscall_set_pre(...) APIs for function and
syscall instrumentation, respectively. We can in-
tercept the data passed into these taint sinks and
analyze their propagated taint directly by calling
the tagmap_getn(ADDRINT p) function, which re-
turns a list of tag structures. If the data argu-
ment passed to one of many taint sinks such as
XMLHttpRequest::open(&method, &url) defined in
xml_http_request.cc is tainted, then the request is
intercepted and logged.

3.2.3 Scaffolding

Scaffolding is a script that listens for when the
browser spawns render processes, detects the type of
process based on reverse-engineering hints, and at-
taches the correct Pintool to that process before it
starts running. This could be implemented in various
ways, such as with the ptrace(2) utility in Linux.

3

https://ccache.dev/
https://source.chromium.org/chromium/chromium/src/+/5de7f215c1877aa551bf351ec85526a2957f0f7d:third_party/blink/renderer/core/xmlhttprequest/xml_http_request.cc;l=604-714


Taint Source Description Entropy (bits)
User Agent String sent in every HTTP request with

browser vendor and version.
4–10

HTTP_ACCEPT headers String sent in every HTTP request with a list
of all the content types the browser under-
stands.

9–14

Browser Plugin list JavaScript-requested list of all native plugins
loaded in the browser. Such plugins are be-
ing phased out, so the list is often simply
undefined, but an older browser can poten-
tially reveal a wealth of unique information
through this list.

1–14

Time Zone JavaScript-requested string with the standard
human-readable time zone.

4–5

Time Zone Offset String sent in HTTP requests with the numer-
ical offset from UTC. Similar to Time Zone,
but looking at discrepancies between the two
can reveal more information of Daylight Sav-
ings time peculiarities.

4–5

Screen Size and Color Depth JavaScript-accessed variables that reveal the
exact size of the browser window, as well as
the range of colors it is able to display on the
current monitor

10–13

Installed Fonts JavaScript-accessed information about which
fonts are installed on the system, which is gen-
erally very correlated with the particular op-
erating system the user is running

5–8

Accepting Cookies Whether or not the browser accepts cookies,
which can be revealed through the behavior of
HTTP requests across site visits.

1

Supercookies Enabled JavaScript-accessed stores of data larger than
cookies that does not need to be sent in ev-
ery request. Examples include LocalStore or
Internet Explorer’s userData.

1–6

HTML5 Canvas Hash Hash of extracted canvas data calculated by
JavaScript that will change with the user’s
operating system, browser version, graphics
card, firmware version, graphics driver ver-
sion, and fonts.

14–22

WebGL Hash Similar to the Canvas hash, but for extract-
ing information about how the user’s browser
renders GPU-accelerated content.

9–22

WebGL Vendor JavaScript-requested string with the graphics
card vendor powering the browser’s WebGL
implementation.

7-15

CPU Class JavaScript-requested string on the CPU man-
ufacturer.

1-4

Memory JavaScript-requested measure of estimated
available memory on the system.

4–8

Figure 1: Tainted browser characteristics and their approximate amounts of entropy [3]. In this case, lower
entropy indicates that a data source contributes less identifying information that could be used to uniquely
track a specific user across the web.
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3.3 Challenges
Although dynamic taint analysis is appealing because
of its granularity and simplicity, there are several
challenges to its implementation. First, we found
that properly attaching the Pintools to Chrome’s ren-
der processes was very difficult, as the browser could
be very fickle about when it forks and joins child pro-
cesses. Although we were able to run Pin on short
proof-of-concept programs written in C++ to ana-
lyze taint, it was very difficult to practically attach a
Pintool to the render process.

The other practical issue was of deployment. For
a non-technical audience, it is very difficult to in-
stall the software necessary to run Pintools, and run-
ning such dynamic instrumentation on binaries em-
pirically slows down their execution by several or-
ders of magnitude. This makes dynamic taint anal-
ysis mostly useful for theory or security research,
rather than as a widespread preventative measure.
Therefore, because of the complexity in working with
Chrome’s process architecture to develop the scaffold-
ing necessary to attach Pintools, and diminishing re-
turns from deployment, we leave the implementation
of dynamic taint analysis to future work.

4 Chrome Extension Blocking
An alternative approach to taint analysis via Pin-
tools is to use Chrome’s extension API, which pro-
vides simple ways of extending Chrome’s functional-
ity through short JavaScript plugins. Chrome exten-
sions are very easy to install and develop, requiring
no separate toolchain or build step. They have been
used in past security research as a proof-of-concept
to prevent other attacks such as XSS [13]. In the
browser fingerprinting literature, the Privacy Badger
extension is also implemented solely as a browser ex-
tension, enabling millions of non-technical users to
easily install it [24].

As a proof-of-concept software, we introduce the
TaintBlock extension, which prevents web pages from
making web requests that have the potential to leak
sensitive information. Our security model is based
on a state machine, where pages that access sensi-
tive user data are placed in a sandboxed environ-
ment that disables further network requests. Taint-
Block uses the getCurrrentPosition method from
the window.navigator JavaScript object as its ex-
ample of a sensitive function. We first present a brief
outline of the anatomy of our Chrome extension in
Section 4.1, then discuss our threat model and secu-
rity guarantees in Section 4.2.

4.1 Extension Architecture
The current version of TaintBlock consists of four
files: manifest.json, background.js, content.js,
and script.js.

• manifest.json: Every Chrome extension re-
quires a manifest.json file that includes im-
portant information about the extension, such
as its name/version/description, permissions it
requires, and the scripts it runs [8].
TaintBlock requires Chrome permissions for
http://*/*, https://*/*, tabs, webRequest,
and webRequestBlocking. The first two allow
us to run the extension on web pages with urls
starting with http:// or https://. The tabs
permission gives us access to tab IDs and events
regarding tab updates. Finally, webRequest and
webRequestBlocking allow us to monitor and
block web requests made by web pages.

• background.js: Background scripts allow ex-
tensions to monitor and respond to events that
occur during a user’s browsing experience [7].
Our background.js maintains blockedList, a
set of tab IDs that should be blocked because
they have accessed sensitive data. The back-
ground script adds a tab to blockedList when
it receives a message saying that a tab has called
the getCurrentPosition method from the con-
tent script. It removes a tab from blockedList
when the tab is removed, replaced, or updated
with a new URL from the address bar. When
background.js learns about a network request,
it blocks the request if the associated tab is in
blockedList.

• content.js: Content scripts run in the context
of web pages and are able to read, modify, and
send details of the web pages the browser vis-
its. They are executed in isolation, which al-
lows them to change the JavaScript environment
without creating conflicts with the page or other
content scripts [6].
Our content.js is notified by script.js when
a tab has called a sensitive method, such as
getCurrentPosition. It then relays this mes-
sage to background.js, implying that network
requests by the tab should subsequently be
blocked. The actual process of identifying which
tabs access sensitive methods is executed in
script.js. Because content scripts are isolated,
content.js injects script.js as a DOM re-
source to expose our modified versions of sen-
sitive functions so that the web page will exe-
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cute our version of sensitive function calls. This
allows us to correctly identify tabs that have ac-
cessed sensitive data and whose network requests
should be blocked.

• script.js: Our script.js is an unprivileged,
DOM-injected script that directly patches the
getCurrentPosition method on the browser’s
Navigator object in JavaScript. The monkey-
patched method sends a custom event message to
content.js notifying it was called by some pro-
cess, so that background.js can block all future
network requests made by the tab accordingly.

In summary, we design our web extension around
the security principles of Chrome’s framework, by
having a background script that blocks all con-
nections (including links, <iframe>s, <img>s, and
XMLHttpRequests), a content script which injects un-
privileged JavaScript code at initial page load, and
patched handlers for sensitive APIs. These are all
tied together by standard Chrome runtime commu-
nication channels.

4.2 Navigator-Based Security
TaintBlock is implemented using a state machine
model. When a tab is first opened, it starts in the
initial state without any restrictions. The tab re-
mains in the initial state unless it accesses any sen-
sitive data, in this case the getCurrerntPosition
method, at which point it transitions into the tainted
state. A tab in the tainted state is blocked from mak-
ing any more network requests. A tab returns to the
initial state when it gets updated with a new url, e.g.
via a link click or the user entering a new url in the
tab directly. Otherwise, a tab remains in the tainted
state until it is closed or replaced by another tab.
Note that with the current implementation of Taint-
Block, a url change on a tainted tab initially leads to
a page that informs the user the access was blocked
by TaintBlock, but the user can choose to load the
new page simply by clicking reload. While this may
be slightly annoying to the user, it also provides an
extra layer of security in the case malicious web pages
try to simulate link clicks on a tainted tab.

Using the state machine model allows TaintBlock
to block web requests issued by web pages that have
accessed sensitive information. This prevents identi-
fiable data from being sent to tracking sites, shield-
ing the device from browser fingerprinting. However,
note that we still allow web pages to obtain the sen-
sitive information. By blocking network requests but
still allowing web pages to acquire such information,
we are able to maintain the functionality of benign

web pages that require such information, like online
maps in our current version of TaintBlock.

The example we used for the sensitive method
analyzed by TaintBlock is the getCurrentPosition
method of navigator.geolocation. More generally,
the Navigator interface holds important identifiable
information about the state and identity of the user
agent, allowing scripts to query this information [5].
For example, navigator.clipboard can be used to
access the system clipboard and read its contents.
Users often need to give special permissions for web-
sites to access this data. Hence, it is imperative that
browsers are protected against malicious servers that
collect identifiable data for tracking reasons.

Aside from the security guarantees, a benefit of
TaintBlock is that it is portable and easy to use.
According to Statcounter, Chrome is the most com-
monly used browser with Chrome holding 63.5% of
the browser market share worldwide [26]. As long as
a user has access to a Chrome browser, the only set-
up required on the user side is loading our code onto
their Chrome extensions. TaintBlock will work auto-
matically once it is installed without any additional
user intervention.

5 Chromium Fork
The Chrome extension could in practice be bypassed
by a dedicated attacker who designs page JavaScript
to undo TaintBlock’s changes. Hence, we explore
options to modify browser architectures to be taint-
aware, so that sensitive information is contained at a
more core level than an extension. We take advan-
tage of the fact that all major modern browsers use
a multi-process architecture [21], where pages with
different origins are isolated in different render pro-
cesses, all managed by the privileged browser kernel.
Fig. 2 describes how the browser kernel itself could
be modified in a way to track and contain taint to
within render processes.

An example of a “benign data read” mentioned in
Fig. 2 a file upload that the user has consented to
via a file dialog, since the user has control over what
the page can access and can avoid uploading any sen-
sitive information. A “sensitive data read” is any
renderer request to the kernel that reveals a row in
Fig. 1, which can be used to surreptitiously track a
user across the web.

We mimic the behavior of TaintBlock by adding
in the new tainted_renderers table, located in the
resource_dispatcher.cc file, to track which ren-
der processes have been tainted by accessing sensi-
tive information. It is important to note that our ar-
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Renderer Kernel Server
Initial page data

Web request
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Benign data read
Benign data

Sensitive data read

Renderer now tainted

Sensitive data

Web request Blocked!

Renderer
(new page) Link clicked

Initial page data

Web request
Response

msc (message sequence chart)

Figure 2: Browser kernel-enforced taint containment.

chitecture does not block the sensitive read request,
since many tracking methods abuse widely deployed
JavaScript features, and outright blocking such data
accesses would break much of the modern web. In-
stead, once an access has been made, the renderer
becomes marked as tainted, and can no longer make
requests to external servers. From the point of view
of the web page, the user will appear to have lost in-
ternet connection after it makes a sensitive data re-
quest, which is a situation that is far more common
and more gracefully handled than the unavailability
of all sensitive JavaScript methods. From the point
of view of the server who is potentially watching the
requests a particular user is making in an effort to
extract identifying information, the user will again
appear to go offline sometime in the middle of ex-
changing requests, so no sensitive data is leaked and
it is not possible to launch an information extraction
attack on the modified architecture itself.

We have implemented tainting at the browser ker-
nel level for sensitive data reads which always make
a kernel request, such as GPU details and geolo-
cation, in a fork of the Chromium browser hosted
at https://github.com/wi11dey/chromium. There
are some fingerprinting channels like screen resolution
that are cached in each renderer before JavaScript ac-
cesses it, but one can envision further modifications
to the JavaScript engine in future work that marks a
renderer as tainted if any of the cached sensitive data
has ever been accessed.

6 Results
We empirically and quantitatively evaluate the per-
formance of each method we study.

6.1 Dynamic Taint Analysis
As mentioned in Section 3, we were not able to im-
plement our design for a dynamic taint analyzer in
Chromium. However, we can still qualitatively eval-
uate the performance of our proposed design. In ac-
curacy and granularity, it is likely without question
to be the most failure-proof method, as it enforces
taint propagation at the binary level. It can also
maintain the least loss of user functionality after a
page requests identifiable data.

However, dynamic taint analysis has issues with
performance, reliability, and portability, so it is not
practical to deploy on a large scale to general users.
This is the primary downside of our proposed design,
but it can still be useful for security researchers who
are looking to detect, with proof, websites that use
fingerprints in cross-site tracking scripts.

6.2 Chrome Extension
We began by testing TaintBlock on websites known to
use Navigator Geolocation. Fig. 3 shows that Taint-
Block immediately blocks network requests coming
from the tab with Google Maps, as expected. As
Google Maps use the device’s location for better ac-
curacy and user experience, we see that most of the
functionality of the map is maintained (including
search and navigation of the map), but network re-
quests become blocked.

We also noticed TaintBlock blocks network re-
quests made by all Google search result pages. Hence,
a user must open a search result in a new tab, or
open it in the same tab, but then refresh the page
to view the contents. While TaintBlock protects the
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Figure 3: Loading Google Maps with TaintBlock.

user from potentially being fingerprinted by geoloca-
tion data, we acknowledge that this particular feature
of the extension may be unwanted by many users.

Finally, we tested TaintBlock against five websites2

known to call the getCurrentPosition method, as
supplied by [22]. We verified that each of these sites
called the target navigator API, and TaintBlock suc-
cessfully blocked network requests coming from tabs
after those web pages called getCurrentPosition.

These promising results indicate that TaintBlock
is simple, modular, customizable, and easily exten-
sible in the future to create more sophisticated and
complete analyses of user information flow.

6.3 Patching Chromium
We have demonstrated how to block two classes of
leaks in Fig. 1: leaks about details of the GPU ven-
dor and geolocation, with strong guarantees on the
security of the system as page JavaScript cannot al-
ter browser kernel behavior. Overall, we summarize
the privacy and usability requirements we were able
to achieve with each method and compare their ad-
vantages in Fig. 4.

7 Limitations
When working with monolithic applications such as
the Chrome web browser, it is difficult to directly
modify code and distribute patched binaries. How-
ever, built-in extension mechanisms often do not offer
the freedom to perform complex analysis due to se-
curity reasons. At the same time, tools like Intel Pin
can be unportable to different system architectures
and tricky for end users to install. Therefore, pri-
vacy on the web is an unsolved problem, and each
approach has its advantages and trade-offs.

2These were sportclips.com, skechers.com, viamichelin.
com, storelocator.samsonite.com, and salvage-parts.com.

We firmly believe that users should care deeply
about their privacy on the web. However, browser
fingerprinting is a serious issue that threatens to make
obsolete same-origin policies for protecting users’ sen-
sitive information and preventing it from leaving a
site. Therefore, any approach that motions toward
solving this problem or offering more tools to ana-
lyze privacy threats is extremely important for users.

One major limitation of all of our proposed pri-
vacy measures is the issue of persistent storage.
By using persistent browser storage APIs such as
Web Storage (also widely known by its identifier
window.localStorage) [15, 16], IndexedDB [1], and
WebSQL [14], an attacker can circumvent taint-based
blocking approaches with the following attack:

1. Obtain sensitive user data by using web APIs
or other methods, such as canvas fingerprint-
ing. For example, a malicious website could call
geolocation.getCurrentPosition() to obtain
the user’s current location.

2. Save the results of the geolocation query to a
serializable JavaScript object, which is tainted
and cannot be sent in a network request. How-
ever, they can place it in persistent storage with
Storage.setItem(key, value).

3. On the next visit of the user to the site, all
taint tracking has been refreshed. The website
can then call Storage.getItem(key) to obtain
the sensitive location data, which no longer
has taint, then freely send that data in a net-
work POST request to a fingerprinting or analyt-
ics server.

Therefore, a knowledgeable attacker could implement
this approach to work around our defense and obtain
sensitive data. Another issue with the browser ex-
tension approach is that page links cannot be trusted
after a single sensitive info request. For example, a
user looking at Google search results with location
being used has their links on the page blocked, de-
spite this being benign functionality. Unfortunately,
this is a necessary tradeoff for security, as otherwise
an attacker could circumvent the taint protections
with JavaScript code that uses anchor elements to
circumvent taint protections, such as:

let payload = encodeURIComponent(data);
let url = `https://evil.com/?q=${payload}`;
let anchor = document.createElement("a");
anchor.setAttribute("href", url);
anchor.click();

The problem with the above code is that it is indistin-
guishable from a user clicking on an actually benign
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Metric Filter List [17] Learning [18] libdft DTA TaintBlock Browser fork
Overhead Minimal 3+ requests Large None None

Maintenance Daily Continuous usage None None None
Granularity Domain Domain Binary-level Renderer Renderer
Geolocation Disabled Disabled N/A Contained Contained
GPU hash Per domain Learned domains N/A Contained Contained
Coverage Known in list Repeat offenders Entire class Entire class Entire class

Site Impact Moderate Moderate Minimal Unclear Unclear
Bypassable Depends on list Yes [18] No Carefully No

Introduced in this paperPrior work

Figure 4: Evaluation of various anti-tracking mechanisms in browsers alongside our methods.

link, but it allows an attacker to leak an arbitrary
string data in a GET request to the server behind the
evil.com domain, even if other network requests are
blocked. Unfortunately, with such a coarse-grained
blocking strategy as available to Chrome extensions,
this loss of functionality is unavoidable.

Low specificity is an unfortunate but necessary
tradeoff for the convenience of implementing taint
tracking in a browser extension such as TaintBlock.
As mentioned before, the dynamic taint tracking abil-
ities of a library like libdft64 come with perfor-
mance and portability penalties, so there is currently
no single solution to this problem.

8 Conclusion
We have introduced several approaches for defending
against browser fingerprinting, including taint-based
blocking, extension-based blocking, and Chromium-
based blocking. Our theoretical design for dynamic
taint analysis-based tracking is implemented through
libdft64, preventing functions from leaking sensi-
tive tainted data. TaintBlock is a simple extension
to block web pages from leaking the browser’s geolo-
cation data, and it can be extended to protect other
sensitive data. Finally, we are able to directly mod-
ify Chromium’s source code to add a table tracking
tainted state across various processes.

As emphasized in previous sections, our solutions
are not yet complete. Below, we outline several di-
rections we can expand our work in the future:

• Implement taint analysis using libdft64: As men-
tioned in Section 3, we leave the tricky imple-
mentation details of our proposed dynamic taint
analysis-based blocker for future work.

• Defend against variable access in TaintBlock:

Many aspects of the DOM used for fingerprinting
are defined as properties rather than methods,
such as cookies and sizes of screens and windows.
Identifying web pages that access these sensitive
data will help build our defense against browser
fingerprinting. We can do this by transparently
shimming JavaScript property getters.

• Support more granular blocking in TaintBlock:
The current structure of TaintBlock blocks all
network requests made by a tab once the page on
the tab accesses sensitive information. We can
instead block specific frames on a tab to improve
user experience.

• Extend the Chromium fork to cover more classes
of leaks from Fig. 1, as well as cover cases that
TaintBlock is unable to, like sensitive variable
access.

Taint analysis is a natural approach for defending
against the problem of cross-site browser tracking.
Our study helps understand the challenges and lim-
itations of defenses against browser fingerprinting,
which is a privacy concern that will continue to be
salient in the near future.
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