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Abstract

Here, we describe compression as a framework for bounding the generalization error of
real-world deep neural networks. This is an emerging framework used to study generalization
properties, somewhat related to practical algorithms for deep compression such as [5], which per-
form well empirically. Unlike many previous uniform convergence bounds, compression does not
bound the error of the model itself, but it rather bounds the error of a restricted representation
of a model with lower complexity. Although this is less direct, it can somewhat circumvent the
fundamental problems with uniform convergence bounds shown in [11]. Results in [1] indicate
that the compression framework can reproduce bounds from previous papers and even achieves
almost non-vacuous bounds on real-world deep neural networks. We look at compression in
the context of other approaches in [13] and [9], and we suggest possible future directions for
studying the empirical performance of these methods.

1 Introduction

Empirical measurements of training and testing error show that deep neural networks often gener-
alize well to held-out data, even when the number of parameters exceeds the size of the training
set—the regime where we would usually expect overfitting [15]. Even though large deep nets have
sufficient expressive power to learn randomly labeled samples [19], illustrating high Rademacher
complexity, they still do not overfit on real-world data. This has puzzled traditional approaches to
bounding generalization error.

Recent results have tried to explain this by applying different complexity measures to the
problem [12, 10]. Some theoretical tools that have been used include PAC-Bayesian analysis [14],
margin-based methods [9], and information theory [18]. One particularly promising method for
explaining the generalization of deep neural networks and other models is that of compression. A
framework was introduced in [1] to bound the generalization error of compressed representations,
and [16] has recently extended this to bounds on the original model.

Although compression has a long history (see examples in [4, 5]), this past research was mostly
empirical. The focus was primarily on reducing the size of neural networks for use on mobile devices
and embedded systems, as well as their compute performance. For example, some classic methods
(see [3]) involve re-training a smaller neural network based on knowledge distilled knowledge from
a larger network. In contrast, if we wish to obtain theoretical generalization bounds, we must use
simpler techniques that can be mathematically analyzed.

Consider the following thought experiment: given a set of data with 10000 labeled examples
drawn from some distribution over a very large input space, what would be the optimal size of neural
network that minimize generalization error on the underlying distribution? We would expect that
the number of trainable parameters of the neural network should be smaller than the size of the

1

mailto:ekzhang@college.harvard.edu


training data, as otherwise, there would be more output hypotheses than arbitrary assignments of
an 10000-bit string of labels to the training examples. However, it turns out that this intuition is
incorrect in practice. Empirical results show that the number of effective parameters of a neural
network architecture is much smaller than the actual number of trainable numbers. There are a
number of possible reasons for this, such as:

• Regularization methods explicitly reduce the effective parameter count by adding a prior
distribution on the network weights, such as in dropout or batch normalization [8].

• Neural networks also have implicit regularization induced by the training method used for
the loss function (especially for stochastic methods like batch training), as described in [12].

• The representations learned by neural networks have flat minima, such that their weight
vectors are robust. As described in [7], adding small stochastic noise to the weight vector
does not substantially affect the error.

Each of these observations motivates finding ways to bound the number of effective parameters of a
neural network. Although theoretical methods have so far not been able to fully explain the results
of experiments testing neural networks on held-out data, they hopefully generate an interesting
dialogue about how generalization arises.

2 The Compression Framework

In this section, we describe the compression framework given in [1]. Consider the standard example
of a multi-class classification problem, where items in a domain x ∈ X are classified by labels
y ∈ {1, 2, . . . , k}. A classifier f : X → Rk is a function that outputs a probability of achieving each
label for every sample in a set. Given some true distribution D over X×{1, . . . , k}, the classification
error of f is defined to be

error(f) = Pr
(x,y)∼D

(
f(x)[y] ≤ max

i 6=y
f(x)[i]

)
.

Here, we use the notation x[i] to denote the i-th element of the vector x. This definition of a
classifier outputting probabilities may seem roundabout, but it gives us enough information to
define margin-based losses.

Definition 2.1 (Margin loss). For any value γ ≥ 0, the γ-margin loss of a classifier f on an input
distribution D is defined as

Lγ(f) = Pr
(x,y)∼D

(
f(x)[y] ≤ γ + max

i 6=y
f(x)[i]

)
.

Note that in the special case when γ = 0, the loss L0(f) is the same as error(f).

Now we should ask what it means for a classifier f to be compressible. An elementary way of
describing this would be to find a classifier f̂ with a smaller representation that roughly agrees f
on a selected set of data. Furthermore, we desire to do this in a way that places nicely with the
notion of margin defined above.

Definition 2.2 (Compression, initial definition). A classifier f is (γ, S)-compressible using a set
of classifiers GA = {gA | A ∈ A} if there exists a selection of parameters A such that for all x ∈ S,

‖f(x)− gA(x)‖∞ ≤ γ.
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However, this definition has limitations because it does not allow for randomness in the com-
pression algorithm. We can do this by introducing a helper string to our representation, which
does not affect the size of the representation but allows us to take probabilities. For example, this
helper string could arise from a pseudorandom number generator based on some small seed.

Definition 2.3 (Compression with helper string). A classifier f is (γ, S)-compressible with helper
string s using a set of classifiers GA,s = {gA,s | A ∈ A} if there exists a selection of parameters A
such that for all x ∈ S,

‖f(x)− gA,s(x)‖∞ ≤ γ.

The main theorem that involving compression bounds is given below. We also provide the proof,
as it is elementary and provides insights about the framework.

Theorem 2.4. If S is a training set with m samples, then for any margin γ > 0, if the trained
classifier f is (γ, S)-compressible via GA,s with helper string s, then there exists A ∈ A such that
with high probability,

L0(gA,s) ≤ L̂γ(f) +O

(√
log |A|
m

)
,

where L̂γ(f) denotes margin loss on a uniform distribution over the training set S.

Proof. Since f is (γ, S)-compressible, there exists some A ∈ A such that the classifier gA,s outputs
probabilities each within γ of A for each input in the training set. If f classifies some sample
(x, y) correctly with margin at least γ, then gA,s must also classify the same sample correctly. This
directly implies that

L̂0(gA,s) ≤ L̂γ(f).

Now all that remains is to bound the generalization error |L0(gA,s)− L̂0(gA,s)|. We can do this by
taking a Chernoff bound on all hypotheses in A.1 For any fixed A ∈ A, the empirical classification
error of gA,s (taken over a random training set S) is the average of m independent Bernoulli random
variables with mean L0(gA,s). By an application of the Azuma-Hoeffding inequality,

Pr(L0(gA,s)− L̂0(gA,s) ≥ τ) ≤ e−2τ2m.

Therefore, if we set τ = c
√

log |A|/m and apply a union bound, the probability that any A ∈ A
has true error more than τ plus its empirical error estimate is at most

|A| · Pr(L0(gA,s)− L̂0(gA,s) ≥ τ) ≤ e−2τ2m = e−2c2 .

Therefore, with confidence at least 1−δ taken over the choice of a random training set S and helper
string s, we have for some A ∈ A that

L0(gA,s) ≤ L̂γ(f) +

√
1

2
log

1

δ
· log |A|

m
.

Note. This is a bound for the generalization error of the compressed classifier gA,s, not the original
classifier f , which allows us to be more straightforward and direct.

1Note that this particular result relies on uniform convergence, but on the compressed classifier representation,
rather than the fully expressive representation.
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3 Compression of a Linear Separator

A simple example of the above compression framework is to prove the generalization of binary
linear classifiers with sufficient margin. Here, the model is a linear separator in Rn represented by
parameter vector c ∈ Rn, where we fix ‖c‖ = 1, where

f(x) = sgn(cTx).

To prove the generalization of a linear classifier, suppose that we have some fixed distribution D
over all labeled samples (x, y), where x ∈ Rn and y ∈ {1,−1}. Consider some training set S ∼ Dm,
and let f be a classifier with margin γ on this training set S.

Now thinking about compression, what happens if we were to add independent random noise η
with variance σ2 to each element of the parameter vector c? If so, then the result of the classifier
(c + η)Tx would be a random variable with mean cTx and variance σ2. Roughly speaking, since
the margin of the classifier is γ, we should be able to add σ = O(γ) noise to each parameter of
the classifier without affecting the classification of the training data. So given any error parameter
ε > 0, we compress c as follows:

1. For each index 1 ≤ i ≤ n of c, flip a coin that is heads with probability pi =
2c2i
εγ2

.

2. If the coin lands heads, set ĉi = ci/pi. Otherwise, if tails, set ĉi = 0.

3. Output the compressed vector ĉi.

Theorem 3.1. The above vector compression method, for any suitable choice of ε, outputs a com-

pressed vector ĉ with at most O
(

logn
εγ2

)
nonzero entries with high probability, and with probability

at least 1− ε, any fixed unit vector u ∈ Rn has

|ĉTu− cTu| ≤ γ.

Proof. First, we prove the accuracy part of the theorem. It is easy to verify that the expected value
of ĉi is equal to ci, and the variance is

Var [ĉi] = pi(ci/pi − ci)2 + (1− pi)c2
i ≤ 2c2

i /pi = εγ2.

Therefore, by Chebyshev’s inequality, we have for any fixed unit vector u that

Pr(|ĉTu− cTu| ≥ γ) ≤
Var

[
ĉTu

]
γ2

≤ ε.

Now we prove the concentration inequality for the number of nonzero entries. If we call this X,
then X is the sum of Bernoulli random variables with mean pi, for each 1 ≤ i ≤ n. The expected
number of nonzero entries is µ =

∑
pi = 2/εγ2. By a Chernoff bound, for any δ ≥ 2,

Pr(X ≥ (1 + δ)µ) ≤ e−
δ2µ
2+δ ≤ e−δ/2.

Therefore, setting δ = Θ(log n) tells us that the probability of having more than (1 + δ)µ nonzero
entries is n−Θ(1), as desired.
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This compression method is interesting, but we can’t use Theorem 2.4 yet because the param-
eters are not discrete. The trick is to run the compression method with margin γ/2, then quantize
each parameter ĉi by rounding it to the nearest multiple of γ/2

√
n, or setting it to zero if greater

than 2εγ
√
n. We omit the proof here for brevity, but this rounded method still outputs a weight

vector such that |ĉTu− cTu| ≤ γ with probability at least 1− ε.
If we let A be the set of all rounded parameters, then each parameter has a total of 4εn different

values, and the number of nonzero parameters is with high probability at most O(log n/εγ2). There-
fore, with high probability, the size of the representation of the compressed classifier (memorizing
incorrect samples) is

log |A| = O

(
log n

εγ2
log(4εn)

)
.

Furthermore, by a Chernoff bound, with high probability the number of samples in S that are
misclassified by ĉ is at most O(εm). Finally, by Theorem 2.4, we have

L0(ĉ) ≤ L̂0(ĉ) +O

(√
log |A|
m

)
= Õ

(
ε+

√
1

εγ2m

)
.

Finally, selecting ε = (1/γ2m)1/3 gives us the following result.

Theorem 3.2. For any number of samples m, given a linear separator with weight vector c on the
set S ∼ Dm, we can efficiently find a compressed vector representation ĉ such that

L(ĉ) ≤ Õ((1/γ2m)1/3).

Note. This generalization bound for the accuracy of the compressed weight vector grows with m,
like we expect. However, it only has order m−1/3, whereas we would expect a generalization bound
of m−1/2. It turns out that with a slightly more complex algorithm described in [1], we can achieve
a better bound of Õ(

√
1/γ2m).

4 Matrix Compression

We now shift our attention to applying the compression framework to matrices as linear trans-
formations, which will be useful for studying neural networks. We first introduce some notation
involving the spectral properties of rectangular matrices.

In what follows, consider an m × n rectangular matrix A, and let σ1, . . . , σr be the singular
values of A in descending order, where r = min(m,n).

Definition 4.1 (Frobenius norm). The Frobenius norm of A, denoted ‖A‖F , is defined by

‖A‖2F =
∑
i

σ2
i = trace(ATA).

Definition 4.2 (Spectral norm). The spectral norm of A is the largest singular value ‖A‖2 = σ1.

These two matrix norms help us study neural networks by compressing their layer weight ma-
trices using singular value decomposition. Specifically, a common technique is to simply zero out
all singular values that are smaller than a given threshold. The rank of a matrix is equal to the
number of nonzero singular values; however, in many neural networks, the largest singular value
is orders of magnitude bigger than the smallest singular value. This means that they can have a
low-rank approximation.
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Low-rank approximation is related to noise stability. Note that if η is a random unit vector, then
Mη has magnitude approximately equal to ‖A‖F /

√
r by SVD. Meanwhile, the absolute maximum

of Mx for any fixed unit vector x is the spectral norm ‖A‖2. If we consider perturbing a given
vector x by noise η, then the ratio between ‖A‖2 and ‖A‖F tells us how close M(x+ η) is to Mx.
Instead of measuring the complexity of a neural network layer by rank, it becomes more interesting
to have a measure of rank that depends on the relative magnitudes of the singular values.

Definition 4.3 (Stable rank). The stable rank of a matrix A is defined as

‖A‖2F
‖A‖22

=

∑
i σ

2
i

maxi σ2
i

.

In general, the stable rank is at least 1 and at most the true rank of A.

If a matrix has low stable rank, then most of its weight is in its maximum singular value, so it
is noise-stable. Conversely, if a matrix has high stable rank, then most of its singular values are
around the same order of magnitude, so it is not noise-stable.

Lemma 4.4. For any matrix A ∈ Rm×n, let Ã be the truncated version of A, removing all singular
values smaller than δ‖A‖2. Then, ‖Ã−A‖2 ≤ δ‖A‖2, and rank(Ã) ≤ ‖A‖2F /(δ2‖A‖22).

Proof. The first fact follows immediately from construction, as the largest singular value of Â−A
is at most δ‖A‖2. The second fact is true because the smallest singular value of Â is at least δ‖A‖2,
so ‖A‖2F ≥ ‖Â‖2F ≥ δ2‖A‖2 · rank(Â).

Notice that the expression ‖A‖2F /(δ2‖A‖22) in the above lemma is just the stable rank of A
divided by δ2. In general, an m× n matrix of rank r can be expressed with (m + n)r parameters
using the singular value decomposition. Thus, when a matrix has low stable rank (as is often
the case with neural networks), this approach gives us a way to compress the matrix from mn
parameters to m+ n times the stable rank times 1/δ2, where δ measures the maximum amount of
tolerable error (i.e., the largest singular value of Â−A).

We will apply this lemma in the next section to derive generalization bounds for neural networks.
This compression approach is interesting because it takes advantage of the spectral properties of
weight matrices (i.e., low stable rank). However, note that the analysis is very pessimistic, assuming
the worst-case Lipschitz constant of the neural network (which grows exponentially with depth).
This is because the algorithm removes a deterministic set of the smallest singular values.

However, as shown in Fig. 1, this pessimistic prediction is not what happens in practice. Noise
injected in earlier layers tends to quickly be attenuated as it propagates to later layers. It turns
out that we can obtain better generalization bounds if we instead compress the matrix in a way
so that the error is Gaussian-like, using randomness in the algorithm, which lets us describe this
attenuation behavior.

To compress, we perform the following projection-based algorithm on each layer weight matrix
A, using our fixed “helper string” of random bits s, with error parameters ε, η > 0:

1. Sample k = 8 log(1/η)/ε2 random matrices M1, . . . ,Mk, with entries i.i.d. ±1.

2. For each 1 ≤ j ≤ k, let Zj = 〈A,Mj〉Mj .

3. Let Â = 1
k

∑k
j=1 Zj .
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Figure 1: Attenuation of Gaussian noise injected at various neural network layers ([1]).

Lemma 4.5. Suppose that we have an h1 × h2 matrix A. For any 0 < δ, ε ≤ 1, and any fixed
set G = {(U i, xi)}mi=1 of m pairs, where U is a n × h1 matrix and x ∈ Rh2, run the randomized
projection algorithm with η = δ/mn, outputting a compressed matrix Â. Then, with confidence at
least 1− δ, we have for any (U, x) ∈ G that

‖U(Â−A)x‖ ≤ ε‖U‖F ‖A‖F ‖x‖.

Proof. This is a consequence of concentration of measure. By applying the Johnson-Lindenstrauss
lemma, the probability that any one individual coordinate of ‖U(Â−A)x‖ is too large is bounded
by 1− η. The rest follows from a union bound.

5 Neural Network Generalization Bounds

In this section, we look at some of the generalization bounds based on the previous compression
algorithms. For simplicity, let’s start by only considering fully-connected deep neural networks with
ReLU activations (denoted φ), as well as constant layer widths. A practical way of compressing
neural networks is to take the top few singular values of their weight matrices.

For notation, let d be the number of layers in the neural network, and let h be the width of
each layer. Denote xi to be the preactivation after the i-th layer, so x0 is the input to the neural
network, while xd is the output. Also, let the d layers have weight matrices A1, . . . , Ad, so the
feedforward computation is xi = Aiφ(xi−1) for all 1 ≤ i ≤ d.

The first compression method in Lemma 4.4, by erasing low singular values in the SVD, gives us
the following generalization bound. This actually reproduces previous results that were obtained
through a PAC-Bayes framework, but with a simpler proof!
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Theorem 5.1 ([13]). The generalization error of the compressed representation of a deep neural
network with layers A1, . . . , Ad, width h, and output margin γ on a training set S is at most

Õ


√√√√√√√

1

γ2m
hd2︸︷︷︸

parameters

max
x∈S
‖x‖

d∏
i=1

‖Ai‖22︸ ︷︷ ︸
Lipschitz constant

d∑
i=1

‖Ai‖2F
‖Ai‖22︸ ︷︷ ︸

stable rank

 .

Proof. We apply Lemma 4.4 to each layer of the neural network, each time setting

δ = γ

(
edmax

x∈S
‖x‖

d∏
i=1

‖Ai‖2

)−1

.

Notice how the product of the spectral norms of the weight matrices is also the Lipschitz constant
of the neural network, assuming 1-Lipschitz ReLU activations. This means that for any i, the
error at the output from compressing layer i is at most δ‖xi‖

∏d
j=i ‖Aj‖2 ≤ γ/ed. Since the neural

network layers have no bias terms, we also have ‖xi‖ ≤ ‖x‖
∏i−1
j=0 ‖Âj‖2. As we can see, the errors

for each layer depend on those of previous layers, but we can show by induction that they add up
in total to at most

‖fA(x)− fÂ(x)‖ ≤ e‖x‖

(
d∏
i=1

‖Ai‖2

)
d∑
i=1

‖Ai − Âi‖2
‖Ai‖2

≤ e‖x‖

(
d∏
i=1

‖Ai‖2

)
dδ ≤ γ.

Hence, this SVD approach is a (γ, S)-compression algorithm. We can then apply a quantization
process similar to Theorem 3.2, by rounding each real parameter to the nearest multiple of ‖A‖F /h2.
Then, using the fact that the rank of ‖Âi‖F is at most its stable rank multiplied by 1/δ2, the number
of parameters of the compressed network is

d∑
i=1

2h
‖Ai‖2F
δ2‖Ai‖22

=
1

γ2
2e2d2h‖x‖2

d∏
i=1

‖Ai‖22
d∑
i=1

‖Ai‖2F
‖Ai‖22

.

Finally, the result follows from Theorem 2.4, after removing constants (2e2) and logarithmic factors
(the size of each parameter as an O(log h)-bit vector).

Although the math got a little messy at the end, the key idea behind this last generalization
bound was still conceptually simple. Taking a low-rank approximation of each weight matrix
allowed us to greatly reduce the number of parameters it took to represent the matrix, while still
maintaining an acceptable level of error within the margin γ. In summary, the ratio between
this generalization error bound and the trivial non-compressed bound (using h2d parameters) is
proportional to (Lipschitz constant) × (stable rank)/γ. When the Lipschitz constant and stable
rank are small, this results in a significant improvement.

However, recall that this analysis is pessimistic about the worst-case noise blowup at each layer,
and thus, we have an exponential dependence on d where we multiply by every spectral norm. We
can instead use the Johnson-Lindenstrauss projections from Lemma 4.5 to guide our analysis,
focusing on the Jacobian of the neural network (rather than singular values, which do not exist in
a nonlinear setting). Let J i,jx represent the Jacobian of layers i through j inclusive, at the point x.
Note that since the activations are ReLU, J i,j

xi
xi = xj .
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Definition 5.2 (Noise sensitivity). If M is a map between real vectors andN is a noise distribution,
then the noise sensitivity of M at a point x with respect to N is

ψN (M,x) = Eη∈N
[
‖M(x+ η‖x‖)−M(x)‖2

‖M(x)‖2

]
.

Furthermore, we also define the noise sensitivity of M with respect to a set of inputs S to be the
maximum of ψN (M,x) over all x ∈ S. This is denoted ψN ,S(M).

This definition provides a general way to state the observations we made about stable rank in
Lemma 4.4. In particular, we have the following example showing how the noise sensitivity is low
at vectors corresponding to large singular values.

Proposition 5.3. Given a matrix M , the noise sensitivity of M at any nonzero vector x with
respect to the multivariate standard Gaussian distribution N (0, I) is equal to ‖M‖2F ‖x‖2/‖Mx‖2.

Notice how the noise sensitivity is equal to the stable rank of M when x is a vector corresponding
to the largest singular value, i.e., ‖Mx‖ = ‖M‖2‖x‖. Since our compression algorithm results in
approximately Gaussian noise at each intermediate layer, we can compress the network close to its
stable rank as long as the intermediate preactivation vectors xi are correlated with high singular
directions of M i. We formalize this below with a few data-dependent notions.

Definition 5.4 (Layer cushion). The layer cushion of layer i is a value 0 ≤ µi ≤ 1, roughly
representing the maximum correlation of any x ∈ S to high singular values of Ai. Formally,

µi = max
x∈S

‖Aiφ(xi−1)‖
‖Ai‖F ‖φ(xi−1)‖

= max
x∈S

‖xi‖
‖Ai‖F ‖φ(xi−1)‖

.

Note that the noise sensitivity of layer Ai to Gaussian noise N (0, I) at φ(xi−1) is equal to 1/µ2
i .

Those, layers with higher layer cushion are less noise-sensitive, for a given set of samples.

Definition 5.5 (Interlayer cushion). For any choice of two layers i ≤ j, the interlayer cushion µi,j
is defined to be

µi,j = max
x∈S

‖J i,j
xi
xi‖

‖J i,j
xi
‖F ‖xi‖

.

Observe that µi,i =
√
h. We also define the minimal interlayer cushion for a layer i to be

µi→ = min
i≤j≤d

µi,j .

Finally, we need a way to understand how noise changes through the activation function. Usu-
ally, ReLU only zeros out some fraction of the neurons in a trained neural network, so this is just
a constant factor.

Definition 5.6 (Activation contraction). The activation contraction c is defined as

c = min
x∈S

1≤i≤d

‖φ(xi)‖
‖xi‖

.

Finally, there is another property of deep neural networks called interlayer smoothness, denoted
ρδ, which tends to be quite high for most trained neural networks. We will not discuss it here for
brevity, but see [2] for details. Using all of these data-dependent properties of a neural network,
here is the resulting generalization bound of the Johnson-Lindenstrauss compression algorithm.
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Figure 2: Comparison of effective parameters from various generalization bounds (lower is better).
Here, the orange bar represents the bound from Theorem 5.1, while the brown bar represents the
bound from Theorem 5.7. The purple bar is the empirical estimate from held-out data.

Theorem 5.7 ([2]). For any fully connected network fA with ρδ ≥ 3d, if fÃ is the network after
compression, then with probability 1− δ, we have

L0(fÃ) ≤ L̂γ(fA) + Õ


√√√√ 1

γ2m
c2d2 max

x∈S
‖fA(x)‖22

d∑
i=1

1

µ2
iµ

2
i→

 .

The key thing to note about this bound, compared to Theorem 5.1, is that it no longer depends
on the Lipschitz constant of the neural network that is exponential in the number of layers. Instead,
it only depends linearly based on the summation of the reciprocals of layer cushion and minimum
interlayer cushion, which are dependent on the correlation of the actual input data to high singular
values of the neural network. As shown in Fig. 2, actual estimates of the number of effective
parameters are much smaller using this approach!

6 Future Directions

The work in this section is original.
The compression framework is interesting because it is a powerful yet elementary way of de-

veloping generalization bounds for neural networks. It is perhaps the most clear example of how
the number of effective parameters differs from the true number of parameters, since large neural
networks can be approximated by much smaller neural networks on real-world data.

While theory is still not at the level of explaining real-world generalization, it may still be inter-
esting to see how these generalization bounds compare for alternative neural network architectures.
For example, we can generalize Theorem 5.1 to ResNets [6] with simple residual connections.

Theorem 6.1. The generalization error of the compressed representation of a residual neural
network (HighwayNet) with layers A1, . . . , Ad, double-layer skip connections B2, . . . , Bd, width h,
and output margin γ on a training set S is at most

Õ


√√√√ 1

γ2m
· hd2 ·max

x∈S
‖x‖ · L2

d ·

(
d∑
i=1

‖Ai‖2F
‖Ai‖22

+
d∑
i=2

‖Bi‖2F
‖Bi‖22

) ,

10



where Li represents the Lipschitz constant of the first i layers J1,i, defined by the recursive formulas
L1 = ‖A1‖2 and Li = ‖Ai‖2Li−1 + ‖Bi‖2Li−2.

Although ResNets with double-layer skips are a simple example, the same techniques could also
be used to bound simple convolutional neural networks and also fine-tuned models like EfficientNet
[17], which may glean insights about their performance.

Finally, it may be interesting to experiment and see how the compression methods used in these
generalization bounds compare on applied deep neural network models, when taking standard
deep compression pipelines as a benchmark. For example, does random matrix projection actually
perform better than pruning small singular values in practice?
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