CS 252R
DeepCoder

Learning To Write Programs

Eric Zhang — October 15th, 2020

Inductive Program

Synthesis

‘Inductive” = Inference

Input-output example:

Input:

2, [3 5 4 7 5]
Output:

[/]

Description.

A new shop near you is selling n paintings.
You have £ < n friends and you would
like to buy each of your friends a painting
from the shop. Return the minimal amount
of money you will need to spend.

Input-output example:

Input:

(6 2 4 7 9],
(5 3 6 1 0]
Output:

27

Description:

In soccer leagues, match winners are
awarded 3 points, losers 0 points, and both
teams get 1 point in the case of a tiec. Com-
pute the number of points awarded to the
winner of a league given two arrays w,t of
the same length, where w|i| (resp. %[i]) is
the number of times team ¢ won (resp. tied).

Input-output example:

Input:

(6 2 4 7 9],
(5 3 2 1 0]
Output:

4

Description:

Alice and Bob are comparing their results in
a recent exam. Given their marks per ques-
tion as two arrays a and b, count on how
many questions Alice got more points than

Bob.

Neural Networks + Synthesis

End-to-end vs. integrated

 End-to-end

* Neuro-Symbolic Program Synthesis (R3NN)

 Machine translation with some knowledge of the context-free grammar

* Integrated

e Using deep learning to give hints to existing domain-specific search
techniques

e [Jrain neural network on a dataset

https://arxiv.org/abs/1611.01855

Learning-Augmented Algorithms

Background topic

* ldea: take existing algorithms, add machine learning as a black-box, and
iImprove the performance assuming competence of the learned model.

* The best learning-augmented algorithms don’t even decrease in worst-case
performance when the ML model outputs bad predictions!

 Example: learning-augmented binary search.

» Binary search takes O(log n) time, where the size of the array is n.

 We can start with an initial guess from a neural network for the true index,
and if this is within 7 from the actual index, then we can get O(log 7) time!

Augmented Alg.

Learned Bloom filter

» Particularly nice because Bloom
filters can get false positives
anyway, so we’re already
assuming some error.

 Even simple neural networks can
greatly reduce the storage costs.

e “The Case for L earned Index
Structures” (Google, 2018).

Backup Filter

Input
Positives
Learned Oracle ‘
Negatives
Negatives

Positives

Figure 1: A learned Bloom filter.

https://arxiv.org/pdf/1712.01208.pdf
https://arxiv.org/pdf/1712.01208.pdf
https://arxiv.org/pdf/1712.01208.pdf

LIPS

“Learned Inductive Program Synthesis”

Predict Attributes Guide Search

(black-box machine learning) (PL algorithms)

Pr(a | E) = f(E) ~ Pr(P | a)

fis a learned map!

Part I: Machine Learning

Attributes

Summarizing P

« DSL has C = 34 functions.

« Program P is represented by an
attribute vector a € R¢.

e of 1 P — R attribute function
simply gives a 0—1 vector
detecting presence for each
function in the program.

FILTER
REVERSE
TAKE
DROP

MAP
SORT

=
—

High-Level Attributes

...may be reflected In the input data!

An input-output example:

Input:

(-17, -3, 4, 11, O, -5, -9, 13, 6, 6, -8, 11]
Output:

[-12, -20, -32, -36, -—-68]

o All the outputs are even => might have the map, filter, (*n) functions.

e Qutputs are sorted => might have the sort, reverse functions.

 Goal: model this human intuition.

Generating Examples

/0 examples are represented by the set £

(orogram)

Training the Neural Network

Deep Learning = Black-Box Function Estimator

E = {(iny,out,), ...}

Learned neural network
< . fB)="Pr(a| E)

a=dP) eR"

"program": "LIST|LIST|COUNT,>0,0|ZIPWITH,+,1,0|ACCESS,2,3",
"examples": [
{
"inputs": |
[-46, -23, -78, 10],
[125, 105, -69]
1,
"output": 82
},
{
"inputs": [
[90, 103, -57, 13, -45, 28, -30, 68, -113, 60, -71,
48, -117, 79, -42, -43, 37, -96],
[13, -52, 48, 6, -8, -55, 35, 75]
1,
"output": null

}
//

1,
"attribute": [

o, o, 0, 0, 0, 0, 0, O, O, 1, O, O, 1, O, 1, O, O, O,
o, o, 0, 0, 0, 0, O, 1, O, O, O, 1, O, O, O, O

— - =
A - Tl .. 8.8, .8Ed : 3 3
TFfefiffefegRvEEigsigg ey, ,f:3¢245:3
0: SORTb |TAKEac|SUMd|.0 2 o0 1 4 0 0 2 0 1 0 2 1 0 1 .0 .3 .4.2 2 5 .2 ..1 0 1 .0
1: MAP (*3)a | ZIPWITH + bc |[MAXIMUMd | .1 1 1 .1 .0 o 1 0 2 1 1 1 .0 3 1 1 0 0 1 of6 1 .
2: ZIPWITH-ba |COUNT (>0)c|.1 .2 .0 .1 .0 1 0 1 n 2 3 3 0 .0 1 1 0 0 .0 3 4
3: SCANLL MIN a | ZIPWITH -a b |FILTER(>0)c|SUMd[.3 .1 1 1 1 0 0 0 .0 .0 n 0 0 0 0 .0 1 1 0 0 0 3
4: SORT a | SORT b | REVERSE d | ZIPWITH*de|SUMf| .0 0 1 4 1 4 0 0 2 0 0 2 0 2 1 .2 0 0 4
5:REVERSE a | ZIPWITHMINab|.2 2 0 2 0 0 0 0 0 0 0 0 .0 .0 .0 .0 . 0 .0 .0
6: MAP (-1) a | MAP (-1) b | ZIPWITH + ¢ d | MINIMUM e .1B.o 0 0 0 0 0 0 0 0 2 2 .2 0 1 0 0 0 .0
7:SCANLL + b | ZIPWITH*ac|sumMd|(.0 0 ©0 ©0 0 .1 © ©0 .1 0 .21 .1 .1 .1 .0 .1 .4 1 0 0 .0 .0 .0
8: REVERSE a | ZIPWITH-b a | FILTER (>0)c|SUMd | .2 .1 .0 .1 .1 .0 .0 .1 .0 .1 B 1 .1 .0 .0 .0 5 ._1. 0 .0 .0

“The key In the LIPS formulation is to
ensure that it is feasible to generate a large
dataset (ideally millions of programs).”

https://arxiv.org/pdf/1611.01989.pdf, p.3

https://arxiv.org/pdf/1611.01989.pdf

Menon et al., 2013

A Machine Learning Framework for Programming By Example

(a) Sample of clues used. LIST denotes a list-, E a string-
nonterminal in the grammar.

Feature Suggested rule(s)
Substring s appears in out- E — “s”, LIST — {E}
put but not input?

Duplicates in input but not LIST — dedup(LIST)
output?

Numbers on each input line LIST — count(LIST)
but not output line?

Dataset Generation

How to pick reasonable input-output pairs

* “We enforce a constraint on the output value bounding integers to some
predetermined range, and then propagate these constraints backward
through the program to obtain a range of valid values for each input.”

* |ssues: maybe a couple random samples could be unrepresentative of the
program as a whole?

Architecture

Details of the neural network

» We want to learn a representative map f : £ — a.
 Loss function: mean binary cross-entropy.

 Network architecture: fully connected, 3-layer.
(Aside: \Why not recurrent?)

« Embed each word in the input/output into a vector, combination of one-hot
encoding for types, with learned embeddings for integers like “27, “5”, “427,
up until some maximum representable value.

 Each I/O pair is mapped to an attribute vector, and these are averaged.

Architecture Schematic

Time-Distributed Feed-Forward Network + Average Pooling

Attribute Predictions

Final Activations

Pooled
N T~
Hiddens 3
t ¢
Hiddens 2
¢ f
Hiddens 1

State Embeddings

AR A S

Inputs 1 Outputs 1 Inputs 5 Outputs 5

Program State

Learned Embedding for [-256, 255]

Dense embedding in a 20-dimensional space

mEg even positive numbers
mEm even negative number
A A4 0dd positive numbers
AA 4 0dd negative numbers
®e®e¢ 2€r0

e®%e Null (padding value)

\ | ooks like the dataset had a lot of

programs that filtered based on
even/odd, or had other similar
behavior...

Second embedding dimension ¢;(n)

First embedding dimension ¢, (n)

Thoughts: Extensions?
Slightly less minimal LIPS

* Encoding I/O elements
 How would you encode other data types? Embeddings.

* One-hot encoding of arrays versus RNN/Transformer encoding.

e (Note: authors tried using a GRU but couldn’t get it to work well)

 More specific attribute vectors

« Context-sensitive: probability of each token with k-token lookbehind

 Advantages? Disadvantages?

(a) Atrous Spatial
Pyramid Pooling

O 1x1 Conv
te=2 3IxX3 Conv

Other Encoder . . EE rate=6
Architectures , oc E:ﬂ 33 Conv

From the DL community

3X3 Conv
rate=18
16

(b) Image Pooling

[

https://arxiv.org/pdf/1706.05587.pdf

https://arxiv.org/pdf/1706.05587.pdf

Attention

https://arxiv.org/pdf/2004.01800v2.pdf

Segmentation Phase
I\

Encoding Phase
L

Attention Propagation Module

/

—

Output T

Next time step:
aggregate (-2, -1 and (
to segment frame t+1

Attention W Attenfion
Propagation J Propagation
A ;
4 N\ N [A
Attention
-3 ky iy UVt—3 Q-2 by o Ui —2 Gi—1 ki1 V=1 Propagation
\\ . /o _ /O .) x /
[Downsampling] [Downsampling] [Downsampling]
T ry 'y
f N\ ([N |\ f H
% Qi3 Ki_3 Vig) U Q- K2 Vi)L -1 Ko Vi)L (i Ky Vi
T — T T i
anodinﬂ IincodingJ Iincoding incoding
/ TDI \ / D2 \ / 1TD3 \ / 1D4 \
1 1 i 1
framc frame [rame frame
T-3 T-2 T-1 T

.

__I__

Qi1 Ky Vi)
Encoding |
1
/ TDI1 \
1
frame
T+1

https://arxiv.org/pdf/2004.01800v2.pdf

Attention
https://arxiv.org/pdf/2005.10821.pdf

al’ az, a3
a,
2RO

a;

Trunk Seg 9 e Output

a3

Trunk Seg 9

https://arxiv.org/pdf/2005.10821.pdf

Specificity

Where’s the right learning interface?

* Divide between “perceptual” and “symbolic”.

« Perceptual: view L (the set of examples), generate easily-interpretable
attribute vector a. More specific attributes are harder to interpret.

 Extreme case is when a is a complex latent vector with no easy
iInterpretation, and you just pass this into a neural translation algorithm.

e Where have we seen this before?

 Symbolic: plug in a into the search algorithm, which tends to be easy even if
the search algorithm wasn’t designed necessarily for LIPS.

Discussion

Part |I: Machine Learning

What are the advantages, disadvantages, and alternatives of:
1. Choice of attribute vectors.
2. Neural network (encoder) architecture.
3. Augmented algorithm versus E2E machine learning.

Part ll: Search Algorithms

“We use the neural network’s predictions
to augment search techniques from the
programming languages community...”

https://arxiv.org/pdf/1611.01989.pdf, p.1 (emphasis mine)

https://arxiv.org/pdf/1611.01989.pdf

Depth-First Search

With lterative Deepening

» Search through all programs of
length < 7.

e Considered a solution if we

execute it on M = 5 examples
and all are (4.

 C++ implementation runs at
3 x 10° programs / second.

E

<€

7N
AT

/\\ /\
/\\

<€

5

Depth =1

Depth = 2

Depth = 3

Depth=4

“Sort and Add”

Active function set reduces
memory requirements

T=2

current proposed
hypotheses candidates

empty

4]

© 000 @O

®)

CTC beam search algorithm with an output
alphabet {¢,a,b} and a beam size of three.

current proposed
hypotheses candidates

@)
O
(&)
@

d

B
(&)
(@)
O

Mult
INn to

Synthesis | Published: 02 August 2012

Program sketching

Armando Solar-Lezama 1

International Journal on Software Tools for Technology Transfer 15, 475-495(2013) | Cite this
article

1051 Accesses | 73 Citations | Metrics

Abstract
Sketching is a synthesis methodology that aims to bridge the gap between a programmer’s
e C high-level insights about a problem and the computer’s ability to manage low-level details. In

sketching, the programmer uses a partial program, a sketch, to describe the desired

S M T— b a Sed synt h e s i S tO O I ; implementation strategy, and leaves the low-level details of the implementation to an

automated synthesis procedure. In order to generate an implementation from the programmer
fi I IS i n 1 h O I e S 7) i n c O d e provided sketch, the synthesizer uses counterexample-guided inductive synthesis (CEGIS).
Inductive synthesis refers to the process of generating candidate implementations from
concrete examples of correct or incorrect behavior. CEGIS combines a SAT-based inductive
synthesizer with an automated validation procedure, a bounded model-checker, that checks
whether the candidate implementation produced by inductive synthesis is indeed correct and
to produce new counterexamples. The result is a synthesis procedure that is able to handle
complex problems from a variety of domains including ciphers, scientific programs, and even

concurrent data-structures.

/12
Enumerative search and

deduction with a small
library of functions

. loc.
. OKCAWMN,
.00 KMM@
= TMMN.
; MMM,
OMMM :
. ONWMM L
'X0.OMMo
, KO OMMx
« XNC xMMO
yNK, dMM@
.dNd. IMMX. .
; XMo :MMM*' 0.
dWN L . NMMO 1xd.
LKO: s KMNX.
Runtime: 5.4s
Found solution:
fun b a —> take (reverse

. LkOOKOXxcC.
"kk:. .:KkWXc
-NN, kMMo
"WMWx kMMk
sdkc TWMX,

. OMWX.
. 0X0cC.
. XNK* "
. COL. . KO
LXwO0ddddddxeMd
; Kkkkkkkkkkkkk,

Synthesizin

Hypotheses

Hypothes

Memoization

Has
Has
Has
Has

ncons ta
ncons ta
ncons ta

NCons bu

Signatures:

(sort (concat a))) b

Alternative Decoders

Or “what didn’t work for them?”

 RNN decoder predicts things token by token + beam search

* "We combined this... by initializing the RNN using the pooled final layer of
the encoder.”

* (This might be a straw man; it’s not really “search” at this point.)

» R3NN paper has a similar, but more reasonable comparison.

* Q: How far did this RNN sequence model get? (length 1)

RNN decoder: attributes — program

Discussion
Part ll: Search Algorithms

1. What other search algorithms would you like to see, augmented
with machine learning predictions?

Part lll: Experiments

“These programs have been inspired by
simple tasks appearing on real
programming competition websites.”

https://arxiv.org/pdf/1611.01989.pdf, p.12 (emphasis mine)

https://arxiv.org/pdf/1611.01989.pdf

F. Realistic Gameplay

time limit per test: 1 second
memory limit per test: 256 megabytes
iInput: standard input
output: standard output

(Source: Codeforces 1430F)

Recently you've discovered a new shooter. They say it has realistic game mechanics.

Your character has a gun with magazine size equal to k and should exterminate n waves of monsters. The i-th wave consists of g;
monsters and happens from the /;-th moment of time up to the r;-th moments of time. All @; monsters spawn at moment /; and you have
to exterminate all of them before the moment r; ends (you can Kill monsters right at moment r;). For every two consecutive waves, the
second wave starts not earlier than the first wave ends (though the second wave can start at the same moment when the first wave ends)
— formally, the condition r; < [;,; holds. Take a look at the notes for the examples to understand the process better.

You are confident in yours and your character's skills so you can assume that aiming and shooting are instant and you need exactly one
bullet to kill one monster. But reloading takes exactly 1 unit of time.

One of the realistic mechanics is a mechanic of reloading: when you reload you throw away the old magazine with all remaining bullets in
it. That's why constant reloads may cost you excessive amounts of spent bullets.

You've taken a liking to this mechanic so now you are wondering: what is the minimum possible number of bullets you need to spend
(both used and thrown) to exterminate all waves.

Note that you don't throw the remaining bullets away after eradicating all monsters, and you start with a full magazine.

Input
The first line contains two integers nand k (1 < n < 2000; 1 < k < 10”) — the number of waves and magazine size.

Examples

input

Copy

2 3
2 36
3 43

output

Copy

S

input

Copy

2 5
3711
10 12 15

output

Copy

30

input

Copy

5 42

42 42 42
42 43 42
43 44 42
44 45 42
45 45 1

output

Copy

1l

Example Program

Sum of min £ elements

Program 0: Input-output example:
k < 1nt Input:

b4+ [1nt] 2, [3 5 4 7 5]

c < SORT b Output:

d < TAKE k c | /]

e <+ SUM d

Example Program

Given 3-point wins and 1-point ties, find the top-scoring team

Program 1: Input-output example:
W< [int] Input:

t < [1nt] 6 2 4 7 9],

c < MAP (x3) w (5 3 6 1 0]

d < ZIPWITH (+) ct OQutput:
e «— MAXIMUM d 27

Example Program

Given widths and heights, make rectangles of minimum total area

Program 4: Input-output example:
X < [1nt] Input:

v < [1nt] [7 3 8 2 5],

C <— SORT X (2 8 9 1 3]

d < SORT y Output:

e <— REVERSE d 79

f <« ZIPWITH (%) de
g < SUM £

Programs solved

- DFS: using neural network
DFS: using prior order
- | 2: Sort and add using neural network
""""""""""" | L2: Sort and add in prior order
------------------- - Enumeration: Sort and add using neural network

_—

- sl £ et 112' , Enumeration: Sort and add in prior order
10° 10° 10 10° 1 1 1 1
0 0 0 0 U 0 . 0 - Beam search

Sol tation ti
olver compuitation time [s Sketch: Sort and add using neural network
Sketch: Sort and add in prior order

Figure 5: Number of test problems solved versus computation time.

103 0. @4
Timeout needed DFS Enumeration 22 o o
to solve 0% 40% 60% 20% 40% 60% 20% 3 s e
5 @2
Baseline 163s 28875 6832s 8181s >10%s >10%s 463s & 10° ESUIL R S
DeepCoder 24s 514s 2654s 9s 264s 4640s 485 8 et
100 .'.’a - 2. ce e .@ none
(a) Length of test programs 7.,
(b)

Figure 3: Search speedups on programs of lengtd influence of length of training pro-
grames.

Discussion

Part lll: Experiments

1. What other experiments might you have wanted to see?
2. What was most surprising in the results”?

3. What could be some practical applications for learned program
synthesis, given these results?

https://arxiv.org/abs/1611.01989

https://arxiv.org/abs/1611.01989

