
Eric Zhang — October 15th, 2020

CS 252R

DeepCoder
Learning To Write Programs



Inductive Program 
Synthesis
“Inductive” = Inference



Neural Networks + Synthesis
End-to-end vs. integrated

• End-to-end 

• Neuro-Symbolic Program Synthesis (R3NN)


• Machine translation with some knowledge of the context-free grammar


• Integrated


• Using deep learning to give hints to existing domain-specific search 
techniques


• Train neural network on a dataset

https://arxiv.org/abs/1611.01855


Learning-Augmented Algorithms
Background topic

• Idea: take existing algorithms, add machine learning as a black-box, and 
improve the performance assuming competence of the learned model.


• The best learning-augmented algorithms don’t even decrease in worst-case 
performance when the ML model outputs bad predictions!


• Example: learning-augmented binary search.


• Binary search takes  time, where the size of the array is .


• We can start with an initial guess from a neural network for the true index, 
and if this is within  from the actual index, then we can get  time!

O(log n) n

t O(log t)



Learned Bloom filter

• Particularly nice because Bloom 
filters can get false positives 
anyway, so we’re already 
assuming some error.


• Even simple neural networks can 
greatly reduce the storage costs.


• “The Case for Learned Index 
Structures” (Google, 2018).

Augmented Alg.

https://arxiv.org/pdf/1712.01208.pdf
https://arxiv.org/pdf/1712.01208.pdf
https://arxiv.org/pdf/1712.01208.pdf


LIPS
“Learned Inductive Program Synthesis”

Predict Attributes

(black-box machine learning)


 Pr(a ∣ E) = f(E)

Guide Search

(PL algorithms)


 ∼ Pr(P ∣ a)

 is a learned map!f



Part I: Machine Learning



Summarizing P

• DSL has  functions.


• Program  is represented by an 
attribute vector .


•  attribute function 
simply gives a 0—1 vector 
detecting presence for each 
function in the program.

C = 34

P
a ∈ ℝC

𝒜 : 𝒫 → ℝC

Attributes



High-Level Attributes
…may be reflected in the input data!

• All the outputs are even => might have the map, filter, (*n) functions.


• Outputs are sorted => might have the sort, reverse functions.


• Goal: model this human intuition.



Generating Examples
I/O examples are represented by the set E



(program)

P

E = {(in1, out1), …}

 a = 𝒜(P) ∈ ℝC

examples

attributes



Training the Neural Network
Deep Learning = Black-Box Function Estimator



(program)

P

E = {(in1, out1), …}

 a = 𝒜(P) ∈ ℝC

examples

attributes

Learned neural network

  f(E) = Pr(a ∣ E)



[

  {

    "program": "LIST|LIST|COUNT,>0,0|ZIPWITH,+,1,0|ACCESS,2,3",

    "examples": [

      {

        "inputs": [

          [-46, -23, -78, 10],

          [125, 105, -69]

        ],

        "output": 82

      },

      {

        "inputs": [

          [90, 103, -57, 13, -45, 28, -30, 68, -113, 60, -71,

            48, -117, 79, -42, -43, 37, -96],

          [13, -52, 48, 6, -8, -55, 35, 75]

        ],

        "output": null

      },

      // ...

    ],

    "attribute": [

      0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0,

      0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0

    ]

  },

  // ...

]





https://arxiv.org/pdf/1611.01989.pdf, p.3

“The key in the LIPS formulation is to 
ensure that it is feasible to generate a large 
dataset (ideally millions of programs).”

https://arxiv.org/pdf/1611.01989.pdf


Menon et al., 2013
A Machine Learning Framework for Programming By Example



Dataset Generation
How to pick reasonable input-output pairs

• “We enforce a constraint on the output value bounding integers to some 
predetermined range, and then propagate these constraints backward 
through the program to obtain a range of valid values for each input.”


• Issues: maybe a couple random samples could be unrepresentative of the 
program as a whole?



Architecture
Details of the neural network

• We want to learn a representative map .


• Loss function: mean binary cross-entropy.


• Network architecture: fully connected, 3-layer. 
(Aside: Why not recurrent?)


• Embed each word in the input/output into a vector, combination of one-hot 
encoding for types, with learned embeddings for integers like “2”, “5”, “42”, 
up until some maximum representable value.


• Each I/O pair is mapped to an attribute vector, and these are averaged.

f : E ↦ a



Architecture Schematic
Time-Distributed Feed-Forward Network + Average Pooling



Learned Embedding for [-256, 255]
Dense embedding in a 20-dimensional space

Looks like the dataset had a lot of 
programs that filtered based on 
even/odd, or had other similar 

behavior…



Thoughts: Extensions?
Slightly less minimal LIPS

• Encoding I/O elements


• How would you encode other data types? Embeddings.


• One-hot encoding of arrays versus RNN/Transformer encoding.


• (Note: authors tried using a GRU but couldn’t get it to work well)


• More specific attribute vectors


• Context-sensitive: probability of each token with -token lookbehind


• Advantages? Disadvantages?

k



Other Encoder 
Architectures
From the DL community

https://arxiv.org/pdf/1706.05587.pdf

https://arxiv.org/pdf/1706.05587.pdf


Attention
https://arxiv.org/pdf/2004.01800v2.pdf

https://arxiv.org/pdf/2004.01800v2.pdf


Attention
https://arxiv.org/pdf/2005.10821.pdf

https://arxiv.org/pdf/2005.10821.pdf


Specificity
Where’s the right learning interface?

• Divide between “perceptual” and “symbolic”.


• Perceptual: view  (the set of examples), generate easily-interpretable 
attribute vector . More specific attributes are harder to interpret.


• Extreme case is when  is a complex latent vector with no easy 
interpretation, and you just pass this into a neural translation algorithm. 


• Where have we seen this before?


• Symbolic: plug in  into the search algorithm, which tends to be easy even if 
the search algorithm wasn’t designed necessarily for LIPS.

E
a

a

a



Discussion
Part I: Machine Learning

What are the advantages, disadvantages, and alternatives of:

1. Choice of attribute vectors.

2. Neural network (encoder) architecture.

3. Augmented algorithm versus E2E machine learning.



Part II: Search Algorithms



https://arxiv.org/pdf/1611.01989.pdf, p.1 (emphasis mine)

“We use the neural network’s predictions 
to augment search techniques from the 
programming languages community…”

https://arxiv.org/pdf/1611.01989.pdf


With Iterative Deepening

• Search through all programs of 
length .


• Considered a solution if we 
execute it on  examples 
and all are ✅.


• C++ implementation runs at 
 programs / second.

≤ T

M = 5

3 × 106

Depth-First Search



“Sort and Add”
Active function set reduces 
memory requirements



Sketch
SMT-based synthesis tool, 
fills in “holes” in code



λ2
Enumerative search and 
deduction with a small 
library of functions



Alternative Decoders
Or “what didn’t work for them”

• RNN decoder predicts things token by token + beam search


• “We combined this… by initializing the RNN using the pooled final layer of 
the encoder.”


• (This might be a straw man; it’s not really “search” at this point.)


• R3NN paper has a similar, but more reasonable comparison.


• Q: How far did this RNN sequence model get? (length )T



T ≤ 2
RNN decoder: attributes → program



Discussion
Part II: Search Algorithms

1. What other search algorithms would you like to see, augmented 
with machine learning predictions?



Part III: Experiments



https://arxiv.org/pdf/1611.01989.pdf, p.12 (emphasis mine)

“These programs have been inspired by 
simple tasks appearing on real 
programming competition websites.”

https://arxiv.org/pdf/1611.01989.pdf


(Source: Codeforces 1430F)





Example Program
Sum of min  elementsk



Example Program
Given -point wins and -point ties, find the top-scoring team3 1



Example Program
Given widths and heights, make rectangles of minimum total area







Discussion
Part III: Experiments

1. What other experiments might you have wanted to see?

2. What was most surprising in the results?

3. What could be some practical applications for learned program 

synthesis, given these results?



https://arxiv.org/abs/1611.01989

https://arxiv.org/abs/1611.01989

