
Generative Modeling of Bach Chorales by
Gradient Estimation

Eric Zhang
Harvard University

ekzhang@college.harvard.edu

Romil Sirohi
Harvard University

rsirohi@college.harvard.edu

Abstract

We introduce a new generative model for music composition, based on
annealed Langevin dynamics and a noise-conditional score matching algo-
rithm. Unlike implicit models such as GANs, this learns an explicit distri-
bution of the input data. We study if Langevin dynamics and score match-
ing can combine the controllability of Markov chain Monte Carlo (MCMC)
methods with the global view and fast convergence of stochastic gradient
descent, to produce high-quality, structured musical compositions.

1 Introduction

A fair amount of recent research has focused on computer-assisted or computer-driven music
composition. Music has been an integral component of human civilization for millennia,
and composers have captivated human imagination. That’s not to mention the talented
musicians who have interpreted musical works and created their own magic. In this sense,
music generation is a two part problem, involving both composition and audio synthesis.
Included in any Western classical musician’s journey is the study of Bach chorales. Indeed,
beginning music theory students are often taught to compose in the style of these com-
positions, almost following strict formulae. These 389 chorales are polyphonic but quite
homogeneous given their size [8]. Each chorale is roughly one minute long. They are set to
a Lutheran hymn and sung by four voices. The melody is sung by the soprano voice (the
highest), and the alto, tenor, and bass voices create texture and harmony.
These parts have to be carefully composed. They articulate the syllables of the hymn,
create contrary motion, and emphasize cadences. Bach chorales generally follow “common
practice” four-part harmonies and are considered a gold standard of the Baroque era of
Western classical music. Beyond harmonizing, each voice must proceed in a certain direction.
While maintaining harmony and counterpoint, the voices must tell a coherent story, which
makes sense in the context of the piece as a whole. This is a moderate task for a music
theory student: possible to do with some amount of training, but not trivial.
In 1988, this problem was framed as an optimization problem. Researchers constructed
300 constraints, relying upon expert knowledge. They then found music that satisfied the
constraints [5]. However, not all of them matched the nuances of Bach’s music. More recent
approaches to this problem have shied away from using human expert knowledge in favor of
neural networks. A 1992 approach breaks down the music composition problem into multiple
tasks and trains a neural net on each task [9]. In 2016, a model called BachBot used a type
of recurrent neural network known as long-short term memory (LSTM) to automatically
compose Bach chorales [11]. This technique has been extended to encoder-decoder BiLSTM
architectures for harmonization in [6], as well as variational latent variable methods for
melodies in [13].

Preprint. Under review.

mailto:ekzhang@college.harvard.edu
mailto:rsirohi@college.harvard.edu

Figure 1: Example of a score sampled by DeepBach.

More recently, OpenAI tackled the music composition problem using transformers on raw
audio waveforms [12]. Although very interesting, this approach has its limitations, as it
precludes human performance. Therefore, we would focus on music modeling in the score-
based domain, to generatively model symbolic representations of music. This has similarities
to language modeling.
Many of these approaches have the drawback of not being flexible. For example, they may
only be able to compose music sequentially, rather than ”fill in” or alter partially written
music. Other methods have the drawback that they are too stringent, for example, only
outputting music in the key of C, or in a pre-specified key by transposition.
This paper draws heavily from a programming languages (PL) inspired approach called
DeepBach [8], where care is given to how the notes are represented. DeepBach encodes notes
and rests per every sixteenth (as inspired by BachBot), and assumes a 44 time signature. It
then constructs a distribution over those notes, jointly with a distribution over metadata
like the placement of fermatas. The authors train neural networks that function as pseudo-
Gibbs samplers, which can model the conditional distribution of individual harmonies at a
given part of the chorale. See Fig. 1 for a representative sample of DeepBach’s output.
The DeepBach approach is a simple and controllable autoregressive model for Bach chorale
generation, which makes it easy to train and use. In particular, the Gibbs sampling ap-
proach is very flexible and can be adapted in interpretable ways. However, there are many
instances where DeepBach is unable to capture long-term structure. Some casual listeners
have remarked that the compositions “sound good but go nowhere.” This could be due to
a combination of vanishing LSTM gradients, and pseudo-Gibbs sampling getting stuck in
1-optimal local minima.
Our contribution is to look in the direction of designing generative deep learning models for
music that strongly avoid local minima, while retaining controllability.

2 Approach

We adopt a novel Langevin diffusion approach due to Song and Ermon in [16] that estimates
gradients of the data distribution using a noise conditional score network (NCSN). This has
been shown to offer performance competitive with that of top GAN models on generative
image modeling datasets like FFHQ and CelebA. Therefore, we have the potential to retain
controllability thanks to the iterative Markov chain Monte Carlo procedure, while estimated
gradients offer the possibility of escape from local minima by simultaneously optimizing the
entire chorale as a sequence.
There are many deep learning approaches that have recently been applied to score-based
music composition or other similar language modeling tasks.

• Generative adversarial networks: Although GANs acheive very promising re-
sults in modeling latent distributions of images, it’s difficult to train them on se-
quence tasks (discrete tokens), as gradients need to propagate from the discrminator
to the generator [20].

2

https://www.youtube.com/watch?v=QiBM7-5hA6o&lc=UgimrufXaZHSRHgCoAEC

• Transformers: Transformers have been applied to the task of music generation and
achieved state-of-the-art results on at least one dataset [10]. However, transformers
are computationally expensive, so they’re not easily controllable through masking
and iterative MCMC-like algorithms.

• Markov random fields: MRFs have been used for generative models to optimize
an energy function, notably for bitmap image generation in ConvChain. This lends
credence to MCMC for discrete probabilistic modeling in the image domain, similar
to DeepBach. However, as previously mentioned, it doesn’t learn global structure.
Also, the alternative approach of gradient ascent is impractical due to adversarial
perturbations.

We also compare to baseline results from sequence models (LSTM and Transformer), which
predict the conditional distribution of the notes at each timestep from the previous notes
before it.
We adapt Song and Ermon’s technique for sampling from a generative model. Their ap-
proach is based on the “score” of the data density, which is the gradient of the log data
density. Since it is a gradient, it is a vector field pointing in the direction of greatest increase
in density. Our model has two basic components:

1. Score matching: To model the score distribution p(x) as a learned function of x.
Although directly computing the data density is computationally intractable due to
estimation of the partition function, we discuss in the next section a loss function
for the score that can be optimized tractably.

2. Sampling: Once the score function has been estimated, a directed MCMC algo-
rithm known as stochastic gradient Langevin dynamics (SGLD) is used to sample
from the modeled data distribution. This combines gradient ascent on the score
function with a certain amount of random noise, which speeds up convergence of
the MCMC.

Unfortunately, as there may be little training data in low density regions, directly applying
score estimation is a difficult task [16]. It could be more than an entire region: one could even
imagine the score to be (at least approximately) low dimensional relative to the distribution
space. These issues could have very adverse effects under Langevin dynamics, where it can
be difficult to leave these regions, or to cross them back into high density regions.
Song and Ermon use two methods to deal with the curse of low dimensional data manifolds.
One is to perturb the data with noise. By adding even a tiny amount of isotropic Gaussian
noise, the data can less resemble a low dimensional hyperplane. The second approach is to
use annealed Langevin dynamics. Under this system, the amount of Gaussian noise added
at each Langevin update step is gradually decreased over the course of sampling, which
improves mixing on multimodal distributions.

3 Encoding

Sticking to the programming language roots, we give much thought to the encoding of the
chorales. This is critical since it affects the performance and expressivity of the learning
algorithm, by introducing a useful inductive bias. We also do not want to assume too much
domain-specific knowledge, as we want our approach to be adaptable to other problems.
Generative music modeling, however, is inherently multidimensional: even the most compact
notation of Bach chorales must be able to distinguish between many similar ideas in musical
sequence data; we cannot lose information to the extent that our encoding could correspond
to different musical ideas.
For the purposes of this project, we do not encode the key signatures or accidentals explicitly,
nor do we handle the minority of pieces that are in time signatures other than 44 common
time. This suffices for a proof-of-concept given our short project timeline, and it also
substantially simplifies the problem. We discretize the music into sixteenth notes. Each
measure is split into 16 semiquavers, which each correspond to four input tokens each
representing a note sung by a voice. Since Bach chorales, characteristic of their era, contain

3

https://github.com/mxgmn/ConvChain
https://gradientscience.org/robust_reps/
https://gradientscience.org/robust_reps/

no smaller beat subdivisions, this encoding stays true to the character of the chorale. We
write a chorale as

xi = {V1, V2, V3, V4},
where V1, . . . , V4 correspond to the soprano, bass, alto, and tenor voices, respectively. Then
each Vi = {ni,t} where the ordered sequence has cardinality equal to the duration of the
Bach chorale in semiquavers—typically about one minute, or 200–400 tokens.
We use the music21 library [3] to perform the transformation of the Bach chorale into our
encoding system, and to decode from our encryption system into legible sheet music. The
music21 library also provides a method that attempts to ascertain the key signature; in our
experience, this algorithm is often faulty. However, a key signature can easily be deduced
by a trained musician simply looking for patterns like the tonic triad, so we do not see this
as a major issue.
The DeepBach paper further encodes and tracks metadata around the piece, such as the
location of fermatas. We felt that using a fermata to signal the end of a phrase, while a
useful inductive bias for the algorithm, may be out of scope given the time constraints of
our project. Musically, the end of a phrase can be communicated through a sensible chord
progression, called a cadence. A possible extension of our work would be to encode more
metadata about the piece.

3.1 Notation

The Bach chorale dataset is represented as {xi}, where each chorale is xi is indexed by i.
We say our data comes from a distribution with probability density function pdata(x), which
is unknown. Instead, we model our problem as having finitely many i.i.d. samples from this
distribution, i.e., the original chorales that Bach wrote.

4 Score Matching

Given a probability distribution with density p(x), we define the score function, following
[16], to be equal to the gradient of the log-density. Mathematically, this can be written as
∇x log pdata(x). The objective in score matching is to find sθ(x) such that

Epdata(x)∥sθ(x)−∇x log pdata(x)∥22 (1)

is minimized. Thus, sθ(x) is favored if it is close to the true score function. Typically,
we only have access to a limited number of samples, not to the actual distribution, so we
do not know pdata(x). The innovation in score matching is we never try to approximate
pdata(x) itself, but instead the score. We will see that score matching avoids estimating the
intractable partition function, which is often seen in generative models such as [7].
Theorem 4.1. We can write the score matching objective as attempting to minimize

Epdata(x) Tr∇xsθ(x) +
1

2
∥sθ(x)∥22, (2)

plus some constant that does not depend on our parameters.

Proof. We do not provide a proof, but this theorem is a consequence of integration by parts.
See the supplementary materials of [18] for the mathematical details.

This updated loss is an expectation over pdata, which we can obtain by sampling from the
training data, and it no longer contains the intractable ∇x log pdata(x) term. However, there
are still some computational difficulties. Note that

∇xsθ(x) = ∇2
x log pdata(x|θ)

is the trace of the Hessian. The computation of this Hessian is costly, as it requires k
backpropagation steps for a k-dimensional output, thus requiring quadratic time [18]. As
we need to maintain flexibility in our high-dimensional data encoding, we need to apply a

4

Hessian-free workaround. One common method is to instead take random projections of the
multivariate distribution, approximating Tr∇xsθ(x) using

Epvv
T∇xsθ(x)v = Tr∇xsθ(x),

where pv refers to the distribution of a multivariate standard normal v ∼ N (0, I). Then we
can also approximate our loss as

Epv
Epdata(x)v

T∇xsθ(x)v +
1

2
∥sθ(x)∥22. (3)

Computing vT sθ(x)v can be done efficiently with forward mode auto differentiation, but
still requires four times more computation than the approach detailed below [16].
The method we apply is called denoising score matching. The intuition here is to create a
distribution qσ = pdata + noise for some noise that depends on σ. Then, for small enough
σ such that qσ ≈ pdata, we have that ∇x log qσ(x) ≈ ∇x log pdata(x). This brings us to
denoising score matching:
Definition 4.2. Denoising score matching is a variant of score matching that finds sθ to
minimize

Eqσ,pdata∥sθ(x̃)−∇x log qσ(x̃|x)∥22. (4)

Then the optimal sθ(x) = ∇x log qσ(x) almost surely, though we may not find that sθ(x).
In particular, the above expectation is still hard to compute. We can adapt denoising score
matching to be Gaussian noise conditional score matching: define s(x̃, σi) = ∇x log qσi(x).
Then we can use Adam’s law (law of iterated expectation) to write the conditional denoising
score objective as

Epdata(x)Ex̃∼N(x,σ2I)∥s(x̃, σ)−∇x̃ log qσ(x̃|x)∥2.
Minimizing over sσ gives ∇x log qσ(x̃) under mild conditions [18]. Since qσ(x̃|x) is well
known from the PDF of the normal distribution, this computation is quite tractable. As
i → ∞, σi → 0, and the optimal s approaches ∇xpdata(x) as desired.
This provides us with the crux of our score matching argument:
Theorem 4.3. The function sθ(x̃) that minimizes

Eqσ,pdata

∥∥∥∥σsθ(x̃)− x̃− x

σ

∥∥∥∥2
2

will closely approximate ∇x log pdata(x).

We can write an approximation of this in closed form: The expectations are simply deter-
mined empirically, by taking draws of x̃, and using the data for x. Recall the strong law of
large numbers: almost surely,

lim
n→∞

1

n
(f(X1) + ...+ f(Xn)) = Ef(X).

The deep neural network that learns sθ(x) via gradient descent is called a noise-conditional
score network, and it can have any architecture that lends an appropriate inductive bias
to the problem being modeled. For example, in previous papers, deep convolutional neural
networks using inverted residual [15] and atrous spatial pyramid pooling [2] blocks were
used as score networks for images. However, our problem is not a computer vision task, so
we use a different architecture discussed in Section 6.

5 Langevin Dynamics

After estimating the score of distribution over chorales, it becomes necessary to draw from
the estimated distribution. This is after all how composition works: a composer has a deep
understanding of how music should be and is able to draw from this distribution. The
algorithm already knows the score function, but it is non-trivial to draw samples from it.
Fortunately, there is an idea from physics that can be helpful. Langevin diffusion can be
used to simulate a distribution given simply its score function. Formally,

5

Theorem 5.1. As t → ∞,

Xt = Xt−1 + αsθ(Xt−1) +
√
2αzt

for zt ∼ N(0, I), and small α, Xt converges to X drawn from the distribution of which sθ
is the score.

A proof is not provided, since this result is standard in the MCMC literature [14]. For
reference, this can be written in continuous time as

dX = αsθX +
√
2α dW.

The above is simply a discretized version of this Ito process. The α term controls the
diffusion step size. It also controls the rate at which X is able to discover new areas of
the support of the distribution, so we’d like it to be high at first and then to decay. It’s
analogous to the noise terms σi, so we’d expect it to be proportional. One compelling idea
is to decay α geometrically [16]. For example, α ∝ σ2

i , where σi decay geometrically. This
proves effective in practice, since it results in a small step size relative to the score [16].
Since samples are from qσ, which is perturbed, the data cannot lie in a low dimensional
manifold. At early stages in training, a large step size means that it is hard for the data to
reside in low probability regions. Earlier samples become more likely to land in high density
regions. Song and Ermon apply a trick using Tweedie’s formula: rather than outputting the
final iteration xT of that algorithm, they add a σ2sθ(xT) to the output [17].

6 NCSN Transformer Architecture

To model the learned score function sθ(x), we need a neural network architecture that
can learn to recognize common harmonies, rhythms, melodic structure, and motives from
sequential data. Given a chorale of length N , our function is of the shape sθ : Σ4N → R4N |Σ|,
where Σ is the set of tokens in our chorale representation.
There are several options for doing this sequence modeling. We choose to pass the learned
music into a linear embedding layer, followed by an encoder from the transformer architec-
ture [19]. This encoder combines multi-head self-attention, a positional embedding, layer
normalization, and dropout steps. It makes up the bulk of our deep learning architecture,
followed by a decoder layer that interprets the outputs as a score function sθ.
The code for our noise-conditional score network, based on transformers, is made available
in the repository at langevin_music/network/ncsn.py. To make this model work, we took
into account other implementation details from the NCSNv2 paper ([17]), which suggests
to train a single score gradient neural network, and scale the gradient by the standard
deviation of the noise. Based on the maximum absolute deviation between chorales in our
input dataset, we also chose to set the noise scales in a geometric sequence, with the largest
noise scale being σ1 = 20 and the smallest noise scale being σ20 = 0.05.
We trained the neural network on the Bach chorales dataset from music21. Since there
were few chorales in the original dataset, we augmented it by transposing each chorale into
different keys by semitones, as long as the ranges for each voice did not lie outside of a
standard acceptable pitch range. Our empirically selected pitch ranges, which encompassed
all but three outlier notes among Bach’s 389 chorales, were C4 to G5 for soprano, F3 to
D5 for alto, C3 to A4 for tenor, and C2 to E4 for bass. The justification for augmentation
was to increase dataset diversity. By themselves, key signatures do not affect the sound of a
piece, as pitch is heard relatively, and furthermore tuning in Bach’s time was very different
from standard tuning (A4 = 440 Hz) today. Dataset augmentation code can be found in
langevin_music/dataset/chorales.py.
To minimize the score-based loss discussed in Section 4, we used the Adam optimizer with
learning rate set to α = 10−3 on the autoregressive mean squared-error loss. All other
parameters were left at their defaults. We use the denoising score matching algorithm
described in Section 4, each time perturbing the input x by Gaussian noise of a random
noise level and training for many iterations.

6

https://github.com/ekzhang/langevin-music/blob/master/langevin_music/network/ncsn.py
https://github.com/ekzhang/langevin-music/blob/master/langevin_music/dataset/chorales.py

7 Results and Comparison

We present our results in this section. As mentioned earlier, we had some loss of performance
from not implementing the full encoding scheme used in DeepBach, including rhythmic
metadata, sequence masking, and fermatas, due to a short project timeline. We also did not
have time to perform a grid search on hyperparameters. Our training was limited to what
was tractable to compute on a self-funded AWS EC2 GPU instance and limited budget.
Despite the difficulties of training a deep learning project in such a short timeline, we were
able to train several different neural network architectures, including character-level token
modeling and score matching. The generated music is generally able to maintain a strong
tonal center and some amount of rhythmic diversity.

7.1 Sequential LSTM

We implemented a standard LSTM sequence model for a baseline comparison. The data
encoding is identical to how we train the Langevin music model. The LSTM predictor has
a quite simple architecture, with an embedding layer, three LSTM hidden layers, and a
log-softmax activation producing the final categorical logits. To prevent overfitting and add
regularization, we add dropout with probability p = 0.2. We train the recurrent neural
network using truncated backpropagation through time (BPTT) with sequence length 32 to
predict the next 4-tuple of tokens in the stream.

Figure 2: Eight measures generated from cold sampling the sequential LSTM.

The chorales generated by the sequential LSTM are not terribly interesting, but it still able
to understand harmony to some extent. With cold sampling shown in Fig. 2, the token
with the maximum log-probability is chosen at each step. This leads to some conservative
behavior; the alto holds the same tied note for eight measures! We qualitatively evaluate
this output as follows.

7

• Harmonically: The neural network has strongly grounded itself in the C major
pentatonic mode. This is very interesting. The composition still sounds reasonably
consonant since it’s hard to introduce much dissonance just from the pentatonic
scale. Note that we did not explicitly teach it anything about scales.

• Rhythmically: Unfortunately, the neural network is not very rhythmically
grounded. Notes start at random, typically unaccented beats. This could likely
be easily fixed by adding rhythmic metadata to the input encoding.

• Melodically: The melody is uninteresting, consisting mostly of tied notes.

Figure 3: Three measures generated from warm sampling the sequential LSTM.

We saw similar results with cold sampling for the other models, with very little variance
in the results, so we omit further discussion of cold sampling. Instead, we perform warm
sampling (temperature T = 1), where each token is chosen with probability proportional to
the output of the neural network. The warm sampling results for the LSTM model, shown
in Fig. 3, are more varied and have some interesting ideas, but no coherent direction.

7.2 Sequential Transformer

For comparison purposes, we also implement an autoregressive transformer model that views
the chorale as a sequence of four-tuples {ni,t}Tt=1, and models the conditional distribution
of tuple t+1 from the notes at times 1, 2, . . . , t, using a transformer encoder. This is similar
to the architecture described in Section 6, except we predict the next note directly, rather
than an estimate of the data distribution gradient.
Using transformers to model sequences in this token-level manner has a history of use in the
literature. For example, large autoregressive language models use a similar approach, mod-
eling the conditional distribution of the next word in the sequence and sampling iteratively
[1, 4]. The architecture of this network is similar to past work from the Google Magenta
team [10]. However, our model is specialized to chorales rather than general MIDI piano
rolls, to reduce training cost and provide a fairer comparison.
A representative score generated by the sequential transformer model is shown in Fig. 4. In
comparison to the LSTM, the transformer is able to generate a far more convincing musical
excerpt, despite the method of sampling (iterative, token-by-token) being identical. It has
a good diversity in harmony, not just taking pitches from the pentatonic scale, and it is
definitely in F major. Furthermore, there is an imperfect authentic cadence at the end of
measure 7 that correctly resolves, which indicates that the model has learned how to end
phrases, despite not being supervised with metadata about fermatas.
We should note that this generated excerpt tends to be a little weird in having note changes
on unaccented beats. This kind of syncopation is not characteristic of Bach’s music, and
we believe that it is just an artifact of us not adding rhythmic metadata to the input
chorales. For long compositions, the problem gets worse because the probability of the model

8

https://youtu.be/ne6tB2KiZuk
https://youtu.be/ne6tB2KiZuk

Figure 4: Eight measures generated from warm sampling the sequential transformer.

accidentally “slipping” into an offbeat increases, since we don’t provide supervision with the
concept of a measure or beat. This speaks to the importance of having a metronomic,
rhythmic grounding for highly-structured text data.

7.3 NCSN Transformer

The noise-conditional score network has a similar architecture to our sequential transformer,
except we do not place the tokens in a categorical embedding. Instead, we do a one-hot
map of tokens into orthogonal unit vectors. It is possible that using a learned or random
embedding (as per the Johnson-Lindenstrauss lemma) could reduce the dimensionality of
the problem and improve performance, but we did not test this approach.
Our sampling procedure is simply to start from a random unit vector x ∈ R4N |Σ|, distributed
according to a multivariate normal, and perturb it by many steps of annealed Langevin
dynamics. We gradually decreased the noise scale after each of T iterations. We also did a
final “denoising” gradient descent step, as described previously.
The results of sampling the NCSN transformer model with annealed Langevin dynamics are
shown in Fig. 5. Unfortunately, these results are overall not as convincing as the sequential
transformer. The output music does indicate some amount of mixing, but generally, the
global-optimizing Langevin dynamics system was not able to converge to a satisfying result.
We believe that the poor performance was due to the high-dimensional discrete nature of
the problem space, and that this could be remedied by reducing the dimensionality with
an initial embedding step for all of the pitches. We therefore do not immediately conclude
that noise-conditional score matching cannot be applied to sequential modeling tasks like
language or music. Rather, it may take additional work to overcome some of the challenges
of dimensional sparsity, which we shed light on.

9

Figure 5: Four measures generated from sampling NCSN with annealed Langevin dynamics.

8 Future Work

Our stated goal in this project was to explore the previously unexplored space of noise
conditional score matching for music generation and analyze its challenges.
We think that score matching would be a natural fit given the success of other MCMC
methods such as DeepBach, and its success in other generative domains such as image
synthesis. The recent trend in the state-of-the-art for the image modeling and language
modeling fields has been converging on similar ideas, with each field borrowing architectures
from the other. Symbolic music is a language, and in theory, MCMC methods offer an
unparalleled level of interpretability and control, while the gradient estimation procedure
allows for the learning of global structure such as repeated motives.
Our results indicate that noise conditional score matching requires additional tweaking to be
able to successfully model token-based sequential data such as musical scores. A potentially
fruitful avenue for future work would be to attempt to do score matching on a distribution of
denser support, such as a learned embedding of musical pitches. It should also be relatively
straightforward to incorporate additional metadata such as a rhythmic metronome to our
models, which would improve performance.
In the interest of openness, all code for this project has been made publicly available on
GitHub at https://github.com/ekzhang/langevin-music. This includes a simple and
original PyTorch implementation of dataset preparation, sequential LSTM models with
backpropagation through time, our music transformer model, and our NCSN transformer
model with annealed Langevin dynamics. We hope that our code may be useful as a reference
for future work in this area.

10

https://github.com/ekzhang/langevin-music

References
[1] Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla

Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al.
Language models are few-shot learners. arXiv preprint arXiv:2005.14165, 2020.

[2] Liang-Chieh Chen, George Papandreou, Florian Schroff, and Hartwig Adam. Rethink-
ing atrous convolution for semantic image segmentation. arXiv preprint 1706.05587,
2017.

[3] Michael Scott Cuthbert and Christopher Ariza. music21: A toolkit for computer-aided
musicology and symbolic music data. Proceedings of the 11th International Society for
Music Information Retrieval Conference (ISMIR 2010), 2010.

[4] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-
training of deep bidirectional transformers for language understanding. arXiv preprint
arXiv:1810.04805, 2018.

[5] Kemal Ebcioğlu. An expert system for harmonizing four-part chorales. Computer
Music Journal, 12(3):43–51, 1988.

[6] Andrei Faitas, Synne Engdahl Baumann, Torgrim Rudland Næss, Jim Tørresen, and
Charles Patrick Martin. Generating convincing harmony parts with simple long short-
term memory networks. In Proceedings of the International Conference on New Inter-
faces for Musical Expression, pages 325–330. Universidade Federal do Rio Grande do
Sul, 2019.

[7] Will Grathwohl, Kuan-Chieh Wang, Jörn-Henrik Jacobsen, David Duvenaud, Moham-
mad Norouzi, and Kevin Swersky. Your classifier is secretly an energy based model
and you should treat it like one. arXiv preprint arXiv:1912.03263, 2019.

[8] Gaëtan Hadjeres, François Pachet, and Frank Nielsen. DeepBach: a steerable model
for Bach chorales generation. PLMR, 2017. Code available.

[9] Hermann Hild, Johannes Feulner, and Wolfram Menzel. Harmonet: A neural net
for harmonizing chorales in the style of js bach. In Advances in neural information
processing systems, pages 267–274, 1992.

[10] Cheng-Zhi Anna Huang, Ashish Vaswani, Jakob Uszkoreit, Noam Shazeer, Ian Simon,
Curtis Hawthorne, Andrew M Dai, Matthew D Hoffman, Monica Dinculescu, and Dou-
glas Eck. Music transformer. arXiv preprint arXiv:1809.04281, 2018.

[11] Feynman T Liang, Mark Gotham, Matthew Johnson, and Jamie Shotton. Automatic
stylistic composition of bach chorales with deep lstm. In ISMIR, pages 449–456, 2017.

[12] Christine Payne Prafulla Dhariwal, Heewoo Jun. Jukebox: A generative model for
music. arXiv preprint arXiv:2005.00341, 2019.

[13] Adam Roberts, Jesse Engel, Colin Raffel, Curtis Hawthorne, and Douglas Eck. A hier-
archical latent vector model for learning long-term structure in music. arXiv preprint
arXiv:1803.05428, 2018.

[14] Gareth O Roberts, Richard L Tweedie, et al. Exponential convergence of langevin
distributions and their discrete approximations. Bernoulli, 2(4):341–363, 1996.

[15] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh
Chen. Mobilenetv2: Inverted residuals and linear bottlenecks. In Proceedings of the
IEEE conference on computer vision and pattern recognition, pages 4510–4520, 2018.

[16] Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the
data distribution. NeurIPS, 2019.

11

[17] Yang Song and Stefano Ermon. Improved techniques for training score-based generative
models. Advances in Neural Information Processing Systems, 33, 2020.

[18] Yang Song, Sahaj Garg, Jiaxin Shi, and Stefano Ermon. Sliced score matching: A scal-
able approach to density and score estimation. In Uncertainty in Artificial Intelligence,
pages 574–584. PMLR, 2020.

[19] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in
neural information processing systems, 30:5998–6008, 2017.

[20] Lantao Yu, Weinan Zhang, Jun Wang, and Yong Yu. Seqgan: Sequence generative
adversarial nets with policy gradient. In Thirty-first AAAI conference on artificial
intelligence, 2017.

12

	Introduction
	Approach
	Encoding
	Notation

	Score Matching
	Langevin Dynamics
	NCSN Transformer Architecture
	Results and Comparison
	Sequential LSTM
	Sequential Transformer
	NCSN Transformer

	Future Work

