
An Efficient Implementation of
Pressure Field Models

Vincent Huang
vvhuang@mit.edu

Franklyn Wang
franklyn wang@college.harvard.edu

Eric Zhang
ekzhang@college.harvard.edu

Abstract—Traditional rigid-body physics models often
produce unstable or inaccurate results for contact force
simulation, while pressure field models, as introduced by
[EDSR19], are more realistic but less commonly used
because of the implementation difficulty. We implement a
minimal physics simulator for contact forces on tetrahedral
meshes from scratch in pure Julia [BEKS17], using the
pressure field model, while incorporating automatic differ-
entiation libraries like [IEF+19] in our setup. We re-derive
and efficiently implement methods for force and torque
computation within the pressure field framework, while
also accelerating the algorithms using geometric space-
partitioning structures, such as [BKSS90], for increased
practical performance. Our work is open source and can
be found in the Hydroelastics.jl package.

I. INTRODUCTION

Reliable physics simulators are essential in training
robots to perform manipulation tasks. However, we saw
in class that simple rigid-body physics simulators with
point forces and constraints are ineffective for modeling
soft contact, as they run into a number of issues. Firstly, a
lack of differentiability between the inputs and outputs
of the simulation makes it difficult to use end-to-end
gradient descent methods to train robots in simulators.
Secondly, rigid body dynamics cannot easily replicate
soft contact scenarios. For instance, simply having a ball
fall onto the ground and remain at rest requires carefully
choosing damping coefficients to stabilize the position of
the ball. Similarly, it is difficult to have a gripper grasp
a soft object with friction without having the object fly
out of the effector if its width becomes slightly smaller
than the object’s diameter.

Another issue in previous hydroelastic force simu-
lators is that their complexity precludes an ease of
understanding. The original pressure field contact im-
plementation is dense and difficult to parse for non-
domain experts, since it relies on very complex libraries
like RigidBodyDynamics.jl. Furthermore, neither
of these libraries is actively maintained, with the last
code activity being over 2 years old, and the pressure
field contact library produces errors when running on
modern versions of Julia. Therefore, it is of interest to
have a simpler, minimal reference implementation that
still captures the essence of pressure field models.

Our motivation in this project is to write a minimal
physics simulator that addresses the limitations of rigid

body dynamics, both to learn about soft-contact physics
simulation algorithms and accelerate them with our own
algorithmic experience. As a secondary goal, we aimed
to extend hydroelastic simulators with modern automatic
differentiation systems like Zygote.jl to implement dif-
ferentiable simulators, which could theoretically be used
later in tasks like learned locomotion. The pressure field
framework is particularly robust and amenable to auto-
matic differentiation due to continuous contact forces.
We discuss the background for both of these topics in
more detail in the next section.

II. RELATED WORK

In this section, we discuss background related to our
project topic, specifically past work done by others.

A. Automatic Differentiation

Automatic differentiation (AD) describes a collection
of techniques at the intersection of machine learning and
programming languages research. Generally, the goal of
automatic differentiation is to algorithmically evaluate
derivatives of composite functions, expressed via code,
in a way that allows for synthesizing complex functions
from simple primitives. This allows programmers to ef-
ficiently compute derivatives for expressions that would
be intractable to symbolically differentiate, due to a
combinatorial explosion in size from repeatedly applying
the product and chain rules.

There are two primary modes of automatic differenti-
ation, both with their own benefits and drawbacks:

• Forward-mode: Given scalar x and a vector func-
tion y = f(x), compute f ′(x). This is conceptually
simpler and has a nice mathematical interpretation.

• Reverse-mode: Given a scalar function y = f(x),
compute the gradient ∂y/∂x. This is more complex,
but it is also more useful in machine learning for
training neural networks via gradient descent (also
known as backpropagation).

Many mainstream programming languages, like Python,
support automatic differentiation by allowing the pro-
grammer to construct dataflow graphs in an embedded
computation language, like TensorFlow [ABC+16], or

https://github.com/ekzhang/hydroelastics

explicitly supports a set of eagerly-evaluated differen-
tiable library functions that generate dynamic compu-
tation graphs, like PyTorch [PGC+17]. These have the
property that they can only differentiate code that is
aware of the backend, requiring context-aware functions
like tf.matmul and tf.transpose instead of more
familiar primitives.

In contrast, Julia has a very powerful homoiconic
metaprogramming system that allows library authors to
directly implement source-code transformations on the
language itself. This allows programmers to differentiate
general functions written in pure Julia, regardless of
whether they are specifically designed with differentiable
libraries in mind. We used Zygote.jl in this project,
which is a source-to-source automatic differentiation
system that supports both forward-mode and reverse-
mode AD, by writing transformations that operate on
the static single assignment (SSA) intermediate repre-
sentation form in the Julia compiler [IEF+19].

B. Pressure Field Models

In this section we give a brief overview of the pressure
field models for soft contact forces as introduced in
[EDSR19]. Technical and algorithmic details about our
own implementation are given in Section III.

The primary goal of pressure field models is to replace
point contact forces between two objects with forces
applied over the entire surface at which two objects
intersect. This change produces stabler results and also
is a more accurate representation of real-world physics.
At the same time, because pressure field models do not
explicitly deform the objects themselves, they can remain
efficient without having to resort to expensive finite-
element methods (FEM).

At a high level, the pressure field model works by
assigning each object a pressure function p(·). The
pressure function assigns to each point in the interior
of the object a nonnegative real number representing the
pressure at that point, which is an intuitive notion of
how much resistance a foreign body protruding into the
object would experience at that point. When two objects
with pressure functions p1(·), p2(·) intersect, there is
a surface S inside the space of intersection at which
the values of p1 and p2 are equal. After identifying this
surface, we then define the total force exerted by one
object on another as the integral∫∫

S
p1(s)ns dA,

where ns is the normal vector to surface S at point s.
Of course, in general it is difficult to accurately evaluate
integrals over surfaces; we explain some simplifying
assumptions as well as our implementation procedure
in the next section.

III. APPROACH

In this section, we discuss the high-level overview of
our mathematical and algorithmic approach to contact
force simulation.

A. Assumptions

First we discuss the setup in our implementation of the
pressure field model. We begin by making the following
assumptions about our objects:

• Each object O is represented as a tetrahedral mesh,
i.e. a collection of vertices V ⊆ R3 and a collection
of non-intersecting tetrahedra T whose vertices are
in V .

• In addition to the vertices of the object, whose
coordinates are fixed at initialization, each object
also has a pose, which we store using the 4 × 4
matrix representation of the rigid transform OXW .

• Each object has uniform mass density.
• Each object’s rotational inertia is a scalar I , rather

than the usual inertia tensor.
• Each vertex v ∈ V of the object has a pressure p(v)

associated with it. We further assume that for any
vertex v on the surface of the object, p(v) is zero,
while for any vertex v in the interior of the object,
p(v) is positive. Finally, for any point q in the object
which is not one of the vertices, we can determine
the pressure p(q) at point q via linear interpolation
using the vertices of the tetrahedron containing q.

The assumptions above allow us to construct objects O
with a well-defined position, shape, mass distribution,
and pressure field function p(·).

B. Computing the Pressure Field Explicitly

After defining the pressure p(v) of each vertex v ∈ V
of an object O, we would like to compute the entire
pressure function p(·) of the object. Recall in the pre-
vious section we wrote that we would assume pressure
interpolated linearly within each tetrahedron. That is to
say, given a tetrahedron t with vertices vi, vj , vk, vl, for
any point q ∈ t we should find constants ai, aj , ak, al
with

aivi + ajvj + akvk + alvl = q, ai + aj + ak + al = 1

and then define

p(q) = aip(vi) + ajp(vj) + akp(vk) + alp(vl).

This observation allows us to explicitly compute the
pressure field as a function of q. We begin by writing q
as a 3 × 1 vector and augmenting it with a 1 to create
the 4× 1 vector Q = [q1]. Similarly, we’ll write each v

https://github.com/FluxML/Zygote.jl

as a 3× 1 vector and augment them with ones to create
the 4× 4 matrix V = [vi vj vk vl

1 1 1 1]. Then it follows that

A =


ai
aj
ak
al


satisfies V A = Q, and so we can solve A = V −1Q.
Now if P = [p(vi) p(vj) p(vl) p(vk)] denotes the matrix
of pressures, we know p(q) = PA = PV −1Q, and this
gives us the explicit expression for the pressure field
within any tetrahedron.

C. Evaluating the Pressure Integral

Now, recall from our overview of the pressure field
model that we compute the force between two objects
with pressure functions p1(·), p2(·) by identifying the
surface S within the object intersection where p1(·) =
p2(·), and then evaluating the integral of p1(s)ns over
the surface.

In general, this is a hard problem, but it is made
significantly easier by the fact that the pressure functions
p1, p2 are linear within each tetrahedron, so we can solve
this problem for every pair of tetrahedra in the two
objects and aggregate the results at the end. For a single
pair of tetrahedra, the surface S is contained in the null
space of p1−p2, which due to linearity must be a plane,
and therefore it follows that ns is some constant normal
n so that∫∫

S
p1(s)ns dA =

(∫∫
S
p1(s) dA

)
n.

Now, since p1 is linear and S is planar, it follows that
the average value of p1(s) over S is the same as the
value of p1(comS), where comS is the center of mass
of S. Therefore we can simplify(∫∫

S
p1(s) dA

)
n = |S|p1(comS)n,

where |S| denotes the area of S.
Now, since S is the intersection of the plane given

by p1 = p2 with the boundaries of the two tetrahedra
we are intersecting, it follows S is the intersection of a
collection of linear constraints, making S a convex poly-
gon. (While conceptually simple, actually computing the
vertices of this convex polygon is quite challenging, and
the algorithm we use is explained in Section III-E.)
Therefore we can triangulate S into nonoverlapping
triangles △1,△2, . . . ,△k that cover S. Now it’s easy to
compute the area |△i| of each triangle, allowing us to
obtain the total area |S| =

∑
|△i|. Similarly, the center

of mass of each triangle comi is the average of the three

vertices, which can also be computed easily, and now
the center of mass of the entire surface S is

comS =
1

|S|
∑
i

|△i|comi,

which can also be computed easily. After these obser-
vations, computation of the overall pressure is straight-
forward. Figure 1 depicts a colored visualization of the
intersection surface and final result.

D. Approximating the Torque

The previous section details how we compute the
contacting force between a pair intersecting tetrahedra.
However, this is not enough for physics simulation –
we also need a method of computing the torque exerted
by each tetrahedron on the other one. Formally, if two
tetrahedra t1, t2 are contained in objects with centers of
mass com1, com2 and the equipressure surface between
the tetrahedra is S, then the torque τ12 exerted by t2 on
t1, taken with respect to com1, is

τ12 =

∫∫
S
r× FdA =

∫∫
S
r× p1(s)n dA,

where r is the moment arm from com1 to s.
This integral is much harder to compute than the

previous ones because the presence of r makes the
integrand nonlinear (in fact, it’s not a polynomial), so
we choose to approximate r with the constant vector
r0 = comS − com1. Thus we have∫∫

S
r× p1(s)ndA ≈ r0 ×

∫∫
S
p1(s)ndA

= (comS − com1)× F21,

where F21 is the force exerted by object 2 on object 1.
We already computed F21 and comS in the previous
section, and the center of mass com1 of object 1 is
similarly straightforward to compute, so this gives a
reasonable approximation of the torques involved.

This concludes our discussion of the model and al-
gorithm basics. In the next sections we discuss the
polygon intersection problem in greater detail and further
performance optimizations.

E. Polygon Intersections

Recall in Section III-C we mentioned that the most
complicated step in the force computation is determining
the equipressure surface of two intersecting tetrahedra.
More precisely, given two tetrahedra t1, t2 with pressure
functions p1(·), p2(·), we must compute the convex poly-
gon formed by intersecting the plane p1 − p2 = 0 with
the two regions t1, t2. We tried two approaches to this
problem.

The first approach was to treat each tetrahedron as the
intersection of four half-spaces defined by the faces of
the tetrahedron. The intersection of the two tetrahedra

Figure 1. A diagram showing two objects (red and blue) intersecting.
We compute the intersection surface (shown in green), and the force
between the two objects is a vector (the green arrow) normal to the
intersection surface with magnitude equal to the pressure integral over
the surface.

thus becomes the intersection of eight half-spaces, and
the plane p1 − p2 = 0 provides an additional linear
equality constraint. We then took these nine constraints
and passed them into the Polyhedra.jl library, which
excels at computations related to polyhedral constraints.

The second approach was to compute the intersection
polygon ourselves. We did this by first projecting each
half-space constraint down one dimension to create a
half-plane constraint, thereby reducing the problem to
one about intersecting eight half-planes. We then imple-
mented an algorithm from [Bur21] which computes the
intersection of N half-planes in O(N logN) time. At
a high level, the algorithm sorts the N half-planes by
the angle each one forms with the positive x-axis. After
the sort, we then process the half-planes one at a time
to determine if each half-plane presents a constraint that
is redundant given the constraints of the previous half-
planes. Doing this allows us to find a minimal set of non-
redundant half-planes, thereby giving us the boundary
of our convex polygon, and then inverting the initial
projection allows us to recover the intersection surface.

The first approach was very reliable because the
Polyhedra.jl library performs computations in a
robust manner, but it was also slower. By contrast, our
implementation of the half-plane intersection algorithm
was around two times faster, but it struggled with nu-
merical instability resulting from coinciding and parallel
lines.

IV. PERFORMANCE OPTIMIZATIONS

In order to produce high-fidelity simulations, efficient
algorithms are a must. This consideration also motivated
our choice of Julia as our programming language, as

Julia with optimizations can be as fast as a modern, high-
performance C compiler.

The main performance bottleneck in the pressure field
physics model is that, if two objects O1 and O2 are
comprised of M and N tetrahedra respectively, then we
must intersect every pair of tetrahedra to compute the
intersection surface and force between the two shapes,
which thereby results in performing an expensive op-
eration MN times. As a result, we can achieve sig-
nificant performance improvements by using geometric
reasoning to short-circuit the computation, i.e. skipping
unnecessary computations for pairs of tetrahedra that
clearly do not intersect.

A. Bounding Box Checking

The simplest check we can perform is to associate
each tetrahedron with an axis-aligned bounding box. For
any tetrahedron, we can let mx and Mx be the mini-
mum and maximum x-coordinates of its vertices, and
similarly define my,My,mz,Mz to create a bounding
box [mx,Mx]× [my,My]× [mz,Mz] that contains the
tetrahedron.

Then, before trying to compute the contact surface
between a pair of tetrahedra, we can first check if the
bounding boxes of the tetrahedra intersect, which is easy
because they are axis-aligned. If the tetrahedra do not
intersect, we can return that the forces and torques they
exert on each other are all equal to zero, and abort
the remainder of the computation. This simple heuristic
alone is able to achieve a 3-4× speedup, with no further
optimizations, because halfplane intersections is very
costly and being able to short-circuit the evaluation there
is quite useful.

B. Basic Intersection Checking

We can further reduce the number of force compu-
tations necessary with the following observation: given
two tetrahedra, if either of them does not intersect their
equipressure plane, then we do not need to intersect the
tetrahedra. This check can easily be performed by finding
the (signed) distance from each vertex of the tetrahedra
to the plane, and short-circuiting if all values are positive
or all values are negative.

C. Spatial Indexing Data Structures

In addition to the previous ideas, we also imple-
mented a more advanced version of the bounding box
intersection idea using R*-trees [BKSS90]. At a high
level, an R*-tree organizes data into an indexed tree
such that each node of the tree corresponds to some
axis-aligned bounding box in n-dimensional space. Each
vertex’s bounding box contains the bounding boxes of its
child vertices, creating a hierarchical ordering of spatial
information and objects.

https://github.com/JuliaPolyhedra/Polyhedra.jl

The key to the efficiency of R*-trees is that they
dynamically rebalance data between tree branches in
a way that minimizes overlap between the bounding
boxes of sibling vertices. This allows for efficient spatial
querying: if we have two objects A and B with tetrahedra
collections T1, T2, we can store all the relevant spatial
information for the tetrahedra in T1 within an R*-tree.
Then, for each tetrahedron t ∈ T2, we query it against
the R*-tree, starting at the root node and checking
whether each branch of the tree contains tetrahedra that
might intersect with the bounding box of t. The overlap-
minimizing property of R*-trees ensures that relatively
few branches will need to be inspected, thereby saving us
from having to check for potential intersections between
a large number of tetrahedron pairs.

As an additional insight, we realized that although the
poses of A and B may change throughout the course of
a simulation, the R*-trees of A and B do not need to.
Instead, we can multiply the vertices of B by the rigid
transformation AXB to determine their positions in the
frame of A, thereby allowing us to reuse the same R*-
tree for A even as A changes over time. This saves us
the computational burden of having to reconstruct R*-
trees at every step in a simulation; we instead construct
an R*-tree for each object once, at initialization.

R*-trees are a fairly complex data structure and can be
difficult to implement from scratch, especially in a new
programming language. Instead, to make the best use of
our time, we incorporated an existing open-source Julia
implementation from the SpatialIndexing.jl package.

D. Random Projections

Inspired by the success of spatial indexing data struc-
tures and bounding boxes, we take these ideas one
step further. Namely, the following result is true: Two
tetrahedra A and B do not intersect if and only if there
exists v so that

min
x∈A

(x · v) > max
x∈B

(x · v).

This is known as the separating hyperplane theorem.
Since tetrahedra are convex, one can evaluate the maxi-
mum of x·v over x ∈ A simply by finding the maximum
over A’s vertices.

This suggests a quick algorithm: choose many random
v, and if minx∈A(x·v) > maxx∈B(x·v) (or minx∈B(x·
v) > maxx∈A(x·v)) we can short-circuit the tetrahedron
intersection.

V. SIMULATION AND VISUALIZATION

The previous sections allow for the computation of
forces and torques between every pair of objects in a
scene. This information allows us to then create physics
simulations. Our simulation setup involves the following
elements:

• We start with a world. This consists of a collection
of objects, represented with triangular meshes as
discussed earlier, with their initial poses as well as
initial translational and angular velocities.

• We also pass functions fi(a, α) into our simulation,
where a is the linear acceleration and α is the
angular acceleration, which take the accelerations
computed from contact forces and calculate the true
accelerations on the object, often by accounting
for external forces. For instance, if we want to
simulate the earth’s gravity, we would pass in a
function fi(a, α) which adds [0, 0,−9.8] to the
translational acceleration a and keeps the angular
acceleration α fixed, for each object Oi in the
world. Since the pressure field model is intrinsically
limited to computing forces resulting from contact,
mechanisms like these are necessary for simulating
a non-contact force such as gravity.

Now, given a world with a collection of objects
O = {O1, O2, . . . , Ok} and functions fi describing the
actions of external forces on each object i (such as
gravity), we can then move forward through a single
timestep of the simulation via the following procedure
for each object Oi:

1) We compute the aggregate force and torque Fi, τi
on object Oi resulting from contacts with each of
the other objects Oj . We then compute

ai =
Fi

mi
, αi = I−1

i τi

using the usual laws of motion.
2) We update (ai, αi) = fi(ai, αi), a user-provided

function, to take into account the change in each
object’s acceleration due to external forces.

3) We update the translational velocity vi and angular
velocity ωi via the usual updates

vi = vi + ai · dt, ωi = ωi + αi · dt.

Note that this update intentionally occurs before the
pose update for stability reasons. This is a variant
of the symplectic Euler method [DR05].

4) The object’s translational pose is incremented by
vi · dt.

5) The object’s rotational pose is more complicated
to update. Following the work in [Wil], we define

the skew matrix S =

[
0 −ωz ωy

ωz 0 −ωx
−ωy ωx 0

]
and angle

θ = ∥ω∥, and then we update the rotational matrix
of Oi via left multiplication by the exponential map
exp(S) = I + sin θ

θ S + 1−cos θ
θ2 S2.

Interactive visualization in Pluto.jl notebooks was
implemented using the MeshCat.jl library, which pro-
duces fast interactive 3-D renders through rasterization.
All of our objects in our simulations were cubes or

https://github.com/alyst/SpatialIndexing.jl
https://github.com/fonsp/Pluto.jl
https://github.com/rdeits/MeshCat.jl

Figure 2. A comparison of our approximate sphere objects, at varying
levels of subdivision. The third-order subdivision on the bottom-right
is essentially indistinguishable from a real sphere.

subdivided icospheres, although our simulator supports
general tetrahedral meshes. To represent cubes, we use
the eight corners along with an additional ninth vertex
at the center of the cube, then divide the cube into
twelve tetrahedra that each contain its center, such that
each of the six faces of the cube is divided among two
tetrahedra. Similarly, to create spherical approximations
using triangle meshes, we begin with an icosahedron
and apply a subdivision surface algorithm that produces
a uniform mesh in every direction. Figure 2 shows
renderings of the spheres we use in simulation.

VI. EVALUATION AND DISCUSSION

A. Test Cases

We tested our work through unit tests on each major
code component, including object generation, tetrahe-
dron intersections, and force computation. Most of these
unit tests consisted of taking simple objects comprised
of only one or two tetrahedra, working out the expected
behavior of our programs by hand, and checking if the
results matched. In addition to unit tests, we used larger-
scale experiments to evaluate the quality of our force
predictions.

Figure 3 shows the results of an experiment where we
take two unit cubes, centered at (0, 0, 0) and (0, x, 0)
for −1 ≤ x ≤ 1, and consider the magnitude of the
net force exerted by each cube on the other as x varies.
The graph exhibits many expected behaviors, such as
symmetry between x and −x, as well as the force having
maximal magnitude at x ≈ 0 but zero magnitude at x =
0 (due to the cubes overlapping perfectly).

Finally, we ran our physics simulator on a variety of
simple scenarios to check if the results looked reasonable
and realistic. We could not come up with a rigorous
testing framework for simulation because it is difficult
to determine what the ”correct” answer should be, so we

Figure 3. Magnitude of translational force between two cubes centered
at (0, 0, 0) and (0, x, 0), as x varies.

primarily resorted to eye tests. For instance, this video
is our simulation of a ball bouncing on a flat surface,
while this video is our simulation of a ball bouncing off
an incline.

B. Performance Benchmarks

Next, we evaluated the performance of our code, with
and without the optimizations we discussed in Sec-
tion IV. We took two k-th order icosahedral subdivisions
of spheres for 1 ≤ k ≤ 3 and measured the runtime
of the force computation algorithm while enabling or
disabling various optimizations that we implemented.
The results are shown in Table I. It is evident from
the results that the optimizations we discussed result in
substantial performance gains, and that these gains are
more measured as the number of tetrahedra in the objects
increases.

C. Anomalies

Despite our best efforts, there was some anomalous
behavior that appeared at various different points in
our implementation of force computation and physics
simulation. For example, as previously mentioned in Sec-
tion III-E, our implementation of polygon intersection
failed in scenarios where two lines were parallel and
very close to each other. Figure 4 shows one of these
examples.

In general, most of the pathological behavior we
encountered was due to problems in handling numerical
instability and floating-point errors; these issues usually
arose when we tried to simulate contact between objects
whose surfaces contained planes parallel to each other.
As mentioned in Section III-E, these problems mostly
vanished when we fed the tetrahedron intersection prob-
lem into Polyhedra.jl.

D. Differentiability

Although we initially wanted to utilize Julia’s pow-
erful AD libraries to create a differentiable physics
simulator, we ultimately were not able to do so. As

https://www.dropbox.com/s/9b9zn0lwr3nkuuo/video-flat.mp4?dl=0
https://www.dropbox.com/s/7jzc47ec0idiaxm/video-incline.mp4?dl=0

Optimizations Icosphere Subdivisions

Case
Bounding

Boxes
Intersection

Checks
Spatial
Indices

Random
Projections 1 2 3

(a) - - - - 0.263 3.77 58.16
(b) ✓ - - - 0.077 (3.41x) 0.957 (3.94x) 14.52 (4.01x)
(c) ✓ ✓ - - 0.071 (3.70x) 0.943 (4.00x) 13.71 (4.24x)
(d) ✓ ✓ ✓ - 0.041 (6.41x) 0.445 (8.47x) 5.30 (10.97x)
(e) ✓ ✓ ✓ ✓ 0.036 (7.31x) 0.368 (10.24x) 3.82 (15.23x)

Table I
THIS TABLE SHOWS THE EFFECT OF OUR VARIOUS SPEEDUPS ON FORCE COMPUTATION RUN-TIME, MEASURED IN SECONDS. NOTE THAT

THE MULTIPLICATIVE IMPROVEMENT INCREASES AS THE NUMBER OF TETRAHEDRA INCREASES.

Figure 4. In this scenario, the colored lines define half-planes which
don’t share a common intersection. However, the brown horizontal
line at the top is actually two nearly parallel lines in close proximity
to each other; the algorithm then fails and detects a triangular region
of intersection defined by the green dots (where the left green dot is
actually two green dots overlayed on each other due to the proximity
of the parallel lines).

mentioned in Section II-A, we implemented our force
computation and physics simulation with the goal of
incorporating Zygote.jl into our code. However, after
finishing our implementations, we discovered that we
were unable to differentiate through our force compu-
tation. The coverage for AD was not as wide as we
had hoped, and at some point we applied operations for
which AD was not supported, so we were unable to make
the simulations differentiable.

VII. CONCLUSION

In this project, we successfully implemented a mini-
mal physics simulator using the pressure field model. We
developed and implemented efficient algorithms for con-
tact force and torque computation using a combination of
mathematical derivations and geometric optimizations.
We then applied these algorithms to create realistic simu-
lations of physical systems. Although we were ultimately
unable to incorporate automatic differentiation into our
physics simulator, our simulations can still be used
to efficiently train robots using black-box optimization
methods. Future work could involve replacing the non-
differentiable elements of our code with differentiable
ones, thereby creating fully differentiable physics sim-

ulators that support end-to-end gradient learning for
robotics tasks.

VIII. ACKNOWLEDGEMENTS

We would like to thank Professor Russ Tedrake for the
lectures on physics simulation and kinematics modeling
that inspired this project, as well as for introducing us to
hydroelastic contact forces and the pressure field model.

The project contributions were as follows: all authors
worked on all components of the code and designed them
together, reviewing each other’s work and collaborating
through version control. However, in terms of focus,
most of the physics simulation, Julia data structures, and
interactive rendering components were written by Eric,
while the force computation and geometric algorithms
were primarily developed by Franklyn and Vincent.
All authors contributed equally to background research,
testing, benchmarks, and the final report.

REFERENCES

[ABC+16] Martı́n Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen,
Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghe-
mawat, Geoffrey Irving, Michael Isard, et al. Tensorflow:
A system for large-scale machine learning. In 12th
USENIX symposium on operating systems design and
implementation (OSDI 16), pages 265–283, 2016.

[BEKS17] Jeff Bezanson, Alan Edelman, Stefan Karpinski, and Vi-
ral B Shah. Julia: A fresh approach to numerical comput-
ing. SIAM review, 59(1):65–98, 2017.

[BKSS90] Norbert Beckmann, Hans-Peter Kriegel, Ralf Schneider,
and Bernhard Seeger. The r*-tree: An efficient and robust
access method for points and rectangles. In Proceedings
of the 1990 ACM SIGMOD international conference on
Management of data, pages 322–331, 1990.

[Bur21] Oscar Burga. Half-plane intersection. CP-Algorithms,
2021.

[DR05] Denis Donnelly and Edwin Rogers. Symplectic inte-
grators: An introduction. American Journal of Physics,
73(10):938–945, 2005.

[EDSR19] Ryan Elandt, Evan Drumwright, Michael Sherman, and
Andy Ruina. A pressure field model for fast, robust
approximation of net contact force and moment between
nominally rigid objects. In 2019 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS),
pages 8238–8245. IEEE, 2019.

[IEF+19] Mike Innes, Alan Edelman, Keno Fischer, Chris Rack-
auckas, Elliot Saba, Viral B Shah, and Will Tebbutt.
A differentiable programming system to bridge ma-
chine learning and scientific computing. arXiv preprint
arXiv:1907.07587, 2019.

[PGC+17] Adam Paszke, Sam Gross, Soumith Chintala, Gregory
Chanan, Edward Yang, Zachary DeVito, Zeming Lin, Al-
ban Desmaison, Luca Antiga, and Adam Lerer. Automatic
differentiation in PyTorch. In NeurIPS 2017 AutoDiff
Workshop, 2017.

[Wil] Adam Williams. Computing the exponential map on
SO(3). https://arwilliams.github.io/so3-exp.pdf.

https://arwilliams.github.io/so3-exp.pdf

	Introduction
	Related Work
	Automatic Differentiation
	Pressure Field Models

	Approach
	Assumptions
	Computing the Pressure Field Explicitly
	Evaluating the Pressure Integral
	Approximating the Torque
	Polygon Intersections

	Performance Optimizations
	Bounding Box Checking
	Basic Intersection Checking
	Spatial Indexing Data Structures
	Random Projections

	Simulation and Visualization
	Evaluation and Discussion
	Test Cases
	Performance Benchmarks
	Anomalies
	Differentiability

	Conclusion
	Acknowledgements
	References

