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Abstract

Neural networks have different layers with varied compute,
memory, and throughput landscapes. We investigate the per-
formance of running deep learning training and inference
workloads on multi-architecture compute resources, specif-
ically layer parallelism that schedules optimized compute
tasks between CPU and GPU. This differs from past work
that focused on optimizing computation graphs on a single
accelerator, through graph rewriting and distributed data tech-
niques. Through experiments, we find that augmenting tra-
ditional GPU-based training with some operations running
on CPUs can be more cost-effective while maintaining com-
parable runtime, and we describe a general framework for
comparing the effectiveness of layer parallelism between dif-
ferent hardware resources. Our initial results demonstrate that
multi-architecture parallelism may be more resource-efficient
for some real-world machine learning problems.

1 Introduction

The recent trend toward larger models like massively scaled
transformers [6, 7] (in terms of number of FLOPS and pa-
rameters) comes a necessity for systems that support training
and evaluating such models on multi-GPU and multi-node
settings. Machine learning frameworks and compilers are
flexible enough to allow for a huge variety of large-scale par-
allelization approaches. However, the trend towards massive
models also makes training and inference expensive.

The most basic type of parallelism in distributed training
is data parallelism, where a copy of the model resides on
each device and operates on difference batches in parallel.
However, this does not scale to large networks, and more
fine-tuned parallelism strategies within operators (SPMD)
and between operators (model parallelism) in a computation
graph are necessary to make large language models tractable.
These types of parallelism make evaluation possible when the
parameters do not fit in GPU memory, and they also reduce
GPU memory bandwidth requirements for some models.
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However, parallelism is not straightforward. Oftentimes
the best parallelism method depends on a huge number of
application and model-specific quantities, including model
architecture, hardware memory and compute throughput, net-
work topology, parameter counts, quantization, floating-point
precision, and architecture. For example, it has been known
since before 2014 that convolutional neural networks are best
parallelized using multiple different data and model-parallel
methods depending on the layer [14]. Also, state-of-the-art
language models such as Megatron [25] and PaLM [3] have
handcrafted model parallelism solutions that allow them to
train multi-billion parameter systems at scale, which would
ordinarily be impossible because the parameters do not fit in
memory on a single node.

This paper aims to address a new topic in parallelism that
fills a gap in the large space of possible strategies: multi-
architecture parallelism. We believe that it is crucial to un-
derstand whether parts of models can run more effectively
between heterogeneous devices of different types, including
CPUs, GPUgs, or a mixture of both. This is important because
some deep learning layers are more amenable to running on
different hardware architectures. For example, GPUs are stan-
dard for inference, but a substantial amount of deep learning
inference in production is done on CPUs for cost efficiency
reasons [10]. Also, matrix multiplication is far more opti-
mized than any other compute kernel in most specialized
GPUs due to targeted support, and it’s possible that more
exotic kernels would have less speedup on GPUs relative to
the cost. It stands to reason that GPU clusters, which tend to
have significant co-located CPU resources, may be more ef-
fectively utilized if certain computations (such as embedding)
could be run on CPUs under a unified parallelism system.

Therefore, the focus of this paper is on developing a frame-
work for describing and measuring the performance of multi-
architecture parallelism on training clusters with both GPU
and CPU resources, producing benchmarks for different real-
world use cases, and finally describing why parallelism may
lead to efficiency gains in heterogeneous data centers.



2 Model Parallelism Background

Due to its inherent difficulty and importance, there has been
a surge of interest in automated parallelism strategies. Recent
work such as Pipedreaml [20], FlexFlow [18], GShard [16],
and Alpa [31] have taken this flexible parallelism approach to
its logical extreme, exploring automated, profile-driven meth-
ods using numerical optimization to develop parallelization
strategies that are much more intricate and complex than any
manually-designed system.

There are two broad classes of ways to use model paral-
lelism between multiple devices (GPUs and TPUs), whether
they are shared by a single node or split between many nodes
in a cluster. The first class is intra-layer parallelism that syn-
chronizes computations within a single operation, but which
partitions the operation along some tensor axis to split the
computations. The second class is inter-layer parallelism,
where the computation graph is actually partitioned between
different devices, lending itself to model or pipeline paral-
lelism algorithms. The JAX [5] framework based on XLA
has basic support for SPMD-based (single program, multiple
data) intra-layer parallelism through compiler passes and an
intermediate representation that shards computation. How-
ever, this requires manual effort and is not automated. It also
has no built-in support for inter-layer parallelism.

To remedy these issues, Alpa [31] introduced an automatic
parallelization layer on top of JAX that inspects the compu-
tation graph and applies compiler optimization passes with
numerical optimization to automatically produce intra-layer
and inter-layer parallelism splits. This resolved the issue
of making large models easier to train on clusters, making
efficient use of devices, and without having to implement
complex manual splitting and scheduling algorithms.

However, Alpa only works on a single device type and
does not support training on heterogeneous clusters, with
different devices. Other systems in this category also focus
on optimization for a single device class, typically profiling
each layer once and relying on assumptions like runtime being
approximately the same across successive executions of the
same computation [18].

3 Computation Graphs

For our initial experiments,2 we use JAX due to its very flex-
ible automatic differentiation approach (based on JVP/VJP
transformations) and optimization passes supported by an
advanced JIT compiler (also shared with TensorFlow XL A
and TorchScript) [17]. Some prior work like FlexFlow [18]
pioneered exploring automatic parallelization in a controlled
environment, based on heuristics and optimization algorithms.

'In this paper, when we mention “model parallelism” we mean a broad
family of approaches that includes pipelining, which be more network-
efficient or compute-saturating than plain, blocking parallelism.

2Code at https://github.com/ekzhang/archax.
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Figure 1: HLO computation for 4-log(tanh(x).sum()) where
x € R¥®, before (left) and after (right) optimization passes.

However, these methods need a great deal of control over
the model specification, which limits practical usability and
integration with existing deep learning frameworks.

3.1 Inspecting HLO IR

To better understand the computational graph that JAX gener-
ates, consider the lifetime of a simple program that uses the
JAX framework. We extracted intermediate representations
for some numeric Python functions in JAX, before and after
applying combinators like the jax.grad gradient operator.
The compilation pipeline first traces executing Python code
with a dummy input to produce a “Jaxpr”, then translates the
Jaxpr into HLO IR, feeds it into the HLO-MLIR pipeline for
optimization, and finally generates low-level CPU or GPU
instructions through LLVM.

These HLO IR programs can be inspected using their Pro-
tocol Buffers definition, which stores the syntax tree as blocks
of operations, as well as built-in static analysis metrics like to-
tal memory reads. An example of this is shown in Fig. 1. The
graph on the right, after optimization, has more instructions,
but the instructions are in large chunks that form efficient
subcomputations with loop fusion, reducing the total number
of memory accesses.
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Model GB Access GFLOPs
log(tanh([2°]).sum()) | 0.012/0.002 | 0.001 /0.001
MobileNetV1 (256x256) 1.6/1.3 45/15.0
ResNet50 (256x256) 40/2.7 31.0/31.5
ResNet50 (16x256x256) | 57.3/33.8 | 496.9/504.4

Figure 2: Memory and compute profiles for neural networks
in JAX with backpropagation, as HLO IR. The first number
is before optimization, and the second is after optimization.

Information from these kinds of computation graphs can be
programmatically analyzed and intercepted, which therefore
makes it a fertile place to experiment with implementing
different automatic parallelization or scheduling patterns of
our own design. In particular, the optimization passes in
HLO are done before any architecture-specific lowering (CPU,
GPU, or TPU), so the graph can be split at different locations
after initial optimization passes and before lowering HLO IR
to machine code.

3.2 Memory Bandwidth and FLOPs

The profiles for memory bandwidth and floating-point opera-
tions for several real-world neural networks in JAX is shown
in Fig. 2. These quantitative metrics were obtained from the
compiler on a computation graph during training, with back-
ward propagation for gradients. Two numbers are shown, the
amount of memory accesses in MB, as well as the number of
floating-point operations in millions.

The first model is a simple function that simply computes
log (sum(tanh(x))) on a vector of length 65536, while the
next two models are convolutional neural networks operating
on 256x256 images. We can see from these numbers that
the optimization step typically reduces the memory accesses
substantially, though it sometimes increases the FLOPs as a
result. These tradeoffs are made because of the small input
size, and we can also directly observe how they affect the
plan with a batch size of 16.

4 Heterogeneous-Hardware Benchmarking

To accelerate ML workflow (e.g. data embedding, model
training, inference), operators leverage specialized hardware
accelerators such as GPUs, TPUs [12], and FPGAs. Even
though such accelerators are widely adopted in industry, we
lack a systematic understanding of their performance and
cost efficiency for different tasks/model/data. Though recent
works are able to approximate the most optimal paralleliza-
tion strategy, they do not factor in whether the underlying
hardware itself is optimal for the ML job. We aim to rectify
this gap through our implementation of TBS: TensorFlow

Benchmarking System.”’ Specifically, we hope to be able to
answer the following questions:

* How does hardware choice impact the training and em-
bedding efficiency for different models and layers? In
particular, are GPUs always more runtime-efficient than
CPUs?

* Does the impact of other configurable settings (e.g. batch
size) remain consistent across heterogeneous hardware
choices?

The user of TBS provides a hardware-independent model
structure definition and a dataset that is compatible with the
model. TBS then measures each layer’s runtime on CPU
and GPU. The measurement is done repeatedly for statistical
significance. Per user’s request, TBS can also vary configura-
tions such as batch size for fine-tuned measurement result. In
addition, with user-provided cost-per-unit-time information,
the runtime measurements can easily be converted to cost
measurements if the user of the system is interested in such
metrics.

Currently, TBS is only capable of measuring layer execu-
tion time, instead of training time. There exists certain non-
trivial programming challenges that we have not yet solved at
this time to measure per-layer training time, such as measur-
ing forward/backward propagation. Refer to Section 7 for a
more detailed discussion regarding this. However, we argue
that measuring layer execution time still leads to insights on
heterogeneous-hardware model training:

Measuring non-trainable layers. TensorFlow provides
non-trainable pre-processing layers to convert various-
formatted inputs to numerical feature vectors that can be
directly processed by computational dense layers during train-
ing. For example, TextVectorization layer converts each
word to a numerical index in the vocabulary. For image pro-
cessing, non-trainable layers are still popular to perform input
augmentation tasks: for example, RandomF1lip, RandomDrop,
and RandomRotation layers are used to randomly alternate
the training image to regularize CNNs. TBS is capable of
measuring the runtime/cost efficiency for such non-trainable
layers on different hardwares and with different configura-
tions. The insights derived from measurement results (i.e.
whether RandomF1ip is more cost-efficient on CPUs/GPUs)
can facilitate the development of more optimal parallelized
training strategies that are hardware-aware.

Measuring learned embeddings. Learned embedding is
also widely used in fields such as transfer learning. For exam-
ple, instead of using images directly as model input (where
each feature value corresponds to a pixel’s intensity), we can
apply a separately learned dense layer to embed the image.
Even if the learned embedding was initially trained for a dif-
ferent purpose, it can still convert the image to a meaningful

3We implemented this stage in TensorFlow rather than JAX due to time
constraints, given the availability of many prebuilt models in TensorFlow.
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Figure 3: The average time to process a sample on a per-layer
granularity for a language model (ML)

representation that can accelerate future training. The TBS
system can measure the inference time for dense layers, which
is equivalent to measuring learned embedding.

The code for TBS is available on GitHub*. We provide
four examples of differently structured models (CNN, RNN,
Language Modeling, LSTM) that TBS is able to evaluate, to
demonstrate our system.

In Section 5 and Section 6, we walk through some exam-
ple time and cost measurements obtained using TBS, and
correspondingly derive insights that can facilitate efficient
heterogeneous-hardware training in the future.

5 Analysis of Processing Time

We ran several experiments in order to motivate our bench-
marking system. Such experiments involved running a Lan-
guage Model (LM), [23], a Recurrent Neural Network (RNN),
[8], and a Convolutional Neural Network (CNN) [22] - the
latter of which is discussed in Section 6. As we are primarily
interested in embedding and preprocessing layers, we anal-
ysed our TensorFlow Benchmarking System on ML inference
applications with a preprocessing step. Refer to Section 7 for
a discussion on ML training.

5.1 Time Analysis: Example with Discussion

As aforementioned, we developed an LM using the Tensor-
Flow [27] framework. In particular, the LM contains a vector-
ization and an embedding layer. We utilized our benchmark-
ing system to investigate the throughput of different layers
within the LM and gained insightful results.

One key observation, as can be supported by Fig. 3, is the
fact that, on a per-layer basis, GPU accelerators are not the
most effective hardware architecture. In particular, for our

4https://github.com/weifanjiang/tbs
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Figure 4: The average time to perform a random rotation
within the preprocessing step of a CNN pipeline. Note that
the CPU performance increase scales relatively linearly with
batch size.

LM-based example, our TBS system clearly shows that pro-
cessing time is minimized when all layers are run on a CPU
rather than a conventional accelerator, such as a GPU. We
also note a similar observation for our CNN example (which
is discussed in more detail in Section 6.1). In particular, we
note that certain preprocessing layers are faster on CPU than
GPU, with the relationship scaling relatively linearly even
as batch sizes are increased. This is especially interesting
considering the fact that recent works [11] have shown that
low batch sizes are often the bottleneck in GPU inference.
Refer to Section 6.2 for a more in-depth analysis of batch size
variation within TBS.

The motivation for a user-friendly benchmarking tool, such
as TBS, is clear after such examples. As models and use-
cases become more and more specialized, simple “rules of
thumb” for embedding and preprocessing tasks are no longer
effective. The flexibility of TBS ensures that users are able to
quickly profile their models, irrespective of the use-case, and
verify in real-time what the best hardware architecture is for
their respective use-case. Since TBS is hardware-agnostic, it
is equally possible for users to benchmark their models using
TBS on TPUs or any other specialized computer architecture,
as long as the respective architecture can interoperate with
the TensorFlow library [1].

6 Cost Analysis

We also investigated the various cost-performance tradeoffs
associated with utilizing different hardware architectures for
the respective preprocessing and embedding layers. Previous
works focused on running embedding on different computer
architectures are limited [2] [21]. Moreover, to the best of
our knowledge, a comprehensive analysis of the costs asso-
ciated with preprocessing and embedding layers on different
computer architectures is even more limited (for example,
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we could not find a relevant paper to cite, which shows the
limited quantity of research on this particular topic). This is
not surprising as research within the field of ML has mainly
been focused on increasing the compute of models, as well as
reducing any network bandwidth bottlenecks associated with
the training of such ever-larger ML models.

However, inevitably, beyond the realm of academic re-
search, there are many cost-performance tradeoffs to consider,
particularly for startups that have limited funding, smaller
research teams, and general programmers that are interested
in developing ML models. Considering research has shown
that the main reason why many technology startups fail is
insufficient funding to continue [24], it is important that pro-
grammers are able to contextualize the throughput that they
can achieve for their ML models for a given computer archi-
tecture with respect to how expensive it is to actually run the
ML model on the respective architecture (i.e. a particular
GPU instance on AWS); so that the user can ultimately make
the best decision for their respective use-case(s).

To do so, we ensured that our command-line TensorFlow
Benchmarking System can take an extra argument as input
that expresses an approximation for the per-hour cost for the
underlying architecture that the ML model is deployed on.
We note that, considering how prevalent the use of various
cloud computing services are becoming for the training and
deployment of ML models [15] [4] [19], such an approxima-
tion is very easy for the user to obtain. Whilst experiments
are insightful, and we comment on some of our findings sub-
sequently, the flexibility of TBS is the most important aspect
of our work as inevitably the cost-effectiveness of any model
layer depends on various factors, such as the dataset used
for the respective training/inference, the architectures being
compared, and so on. The goal of our system, after all, is
to empower users to make more cost-effective decisions for
their respective use cases.

6.1 Cost-Throughput Tradeoffs:
with Discussion

Example

We now present a discussion of results for one of the many ex-
periments that we conducted. This particular experiment was
selected as it presents an interesting discussion of why view-
ing performance throughput alone does not convey enough in-
formation for a user. We consider the following use-case that
involves running a Convolutional Neural Network (CNN) [22]
on Google TensorFlow’s flowers dataset [27]. We inten-
tionally ensured that the respective CNN has various pre-
processing layers, such as RandomRotation, RandomZoom,
and Rescaling [26]. The CPU used was the AMD EPYC 7302
with 16 cores and the GPU used was NVIDIA A100 40GB.
Cost estimates were derived by matching the respective hard-
ware to various cloud providers that offer identical (or very
similar) computing resources [28]. Since this analysis was
focused on the preprocessing layers, we chose to focus on
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Figure 5: A graph demonstrating how quickly on average
(in log seconds) a dataset sample is processed through the
various layers of the CNN
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Figure 6: A graph demonstrating the average cost of process-
ing one sample (in log scale) through the various layers of the
CNN

ML inference for this particular example.

From Fig. 5, it is clear that the linear algebra intensive lay-
ers (convl, conv2 etc) are faster on GPU accelerators relative
to CPU, which is inline with general practice. However, it is
worth noting that the preprocessing layers are slightly faster
on CPU. Considering the average time per sample alone, a
user may conclude that it is advantageous to run the respec-
tive use-case on GPU alone as the preprocessing speedups
using CPU relative to GPU are relatively marginal and thus
do not warrant significant code change (i.e. the removal of
the preprocessing layers and creating a separate preprocess-
ing pipelining instead and/or partitioning the preprocessing
layers on a different architecture altogether). However, when
factoring in the cost associated with processing one sample,
as shown in Fig. 6, the user will likely come to a different
conclusion altogether.

With this information, a user will more likely to conclude
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Figure 7: Median per-sample time for TextVectorization
layer on CPU/GPU using different batch sizes. The shaded
region is between 25 and 75 percentiles.
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Figure 8: Median per-sample time for RNN layer on CPU/GPU
using different batch sizes. The shaded region is between 25
and 75 percentiles.

that the creation of such a CPU-based preprocessing pipeline
is effective in terms of cost-performance tradeoff as the pre-
processing layers include non-trivial cost improvements with
no sacrifice in throughput when run on CPU versus GPU.
We hope this example provided further motivation for our
TensorFlow benchmarking system, especially with respect to
our decision to include cost analysis also.

6.2 Varying other configurations in TBS

TBS is able to perform measurement varying configurations
other than hardware choices. Figure 7 shows an example of
measuring the per-sample runtime of TextVectorization
on CPUs/GPUs with different batch size configuration. In
general, as batch size increases, the per-sample runtime over-
head decreases. We notice that GPU benefits more from
increased batch size.

Figure 8 shows the runtime for RNN layer in TensorFlow
on CPU/GPU with varying batch sizes. We notice that for
batch size larger than 512, it is more time efficient to run RNN
layers on GPUs rather than CPUs. This observations shows

that changes in configuration would lead to different optimal
hardware choices. TBS can help users to benchmark model’s
runtime and cost efficiency on heterogeneous hardwares un-
der different configurations, to find the configuration-specific
optimal hardware choices.

7 Future Work

Inevitably, we were not able to investigate everything within
multi-architecture parallelism and preprocessing. As can be
seen in our research code, we had implemented an LSTM
network [30] using time-series data as well as a graph neural
network (GNN) [29]. Our TensorFlow benchmark system uti-
lizes the popular Python object serialization library Pickle [9]
in order to deserialize ML models for benchmarking. How-
ever, not all models are serializable this way, such as our
LSTM and GNN implementations, and a better system should
use more advanced formats like cloudpickle or ONNX.

In addition to this, our current benchmarking system has
the assumption that the input model was developed using the
TensorFlow library. Considering the prevalence of Tensor-
Flow [1], this is a fairly weak assumption; however, future
work could include the integration of our benchmarking sys-
tem for other model frameworks.

The ideal framework for this would be JAX. If TBS were a
longer-term project, the most obvious direction would be to
integrate our research with the JAX [5] compiler to generate
automatic multi-architecture parallelism. We faced two major
challenges when attempting this that we could not overcome
in the time allocated for the project.

Firstly, novel contributions to autonomous parallelism is
inevitably very difficult, especially considering the fact that
it is currently still a cutting-edge research area largely spear-
headed by a single research group at UC Berkeley. Even then
existing solutions, such as Alpa [31], are still rigid in the sense
that they require a user to solely use JAX [5], which, though
a great step forward in the right direction, has inevitably not
received nearly the same usage as TensorFlow [1]. A more
feasible addition to TBS could be a simple recommendation
algorithm that outputs which layers or preprocessing tasks
should be run on specific computer architectures. However,
considering TBS already provides visualizations of such met-
rics, careful thought would have to be taken to avoid any
redundant features.

Secondly, we primarily focused on embedding and prepro-
cessing tasks considering we were motivated by the lack of
research on multi-architecture embedding and the like. That
being said, it would be inevitably useful if TBS could be
expanded to support profiling of other training pipelines of
ML models (beyond just trainable embedding/preprocessing
layers) as this would serve an even greater purpose for the ML
community as a whole. The major obstacle to this, however, is
the development of an accurate approximation for processing
times on a layer-by-layer granularity. Research within this



space is limited with some recent works [13] investigating the
feasibility of using DNNs to approximate how long parts of
ML models take to process samples.

Despite these technical challenges, we believe that our
compiler explorations and related benchmark results show
some that there is promise in multi-architecture parallelism
in deep learning. We hope that the ideas in this report present
a path forward for exploring this design paradigm. Time will
tell if machine learning runtimes of the future will seamlessly
parallelize devices with multiple architectures in tandem, and
we eagerly await.
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