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Abstract

This is our final project for CS 221 (Computational Complexity), an expository report on
[Raz17], which gives samples-space lower bounds (and a fortiori time-space lower bounds) for
a broad class of learning problems.

Specifically, it is shown that if we consider the learning problem M : Θ× X → {−1, 1} and
a learner is given a stream of samples (xi, yi) where yi = Mθ(xi), and the largest singular value
of MT is |X |1/2 · |Θ|1/2−ϵ, then any learning algorithm for the corresponding learning problem
requires either a memory of size at least O((ϵn)2) or at least 2Ω(ϵn) samples, where n = log2 |Θ|.

We elucidate the seemingly strange singular-value condition, showing that it has connections
to the difficulty of ascertaining y from x and given a probability distribution on θ. We then
strive to simplify the arguments in the paper in light of these insights.

1 Motivation

Machine learning has risen to incredible prominence in recent years, attaining stunning results on
tasks as varied as protein folding [SEJ+20], playing games [SHM+16] and even music generation
from audio waveforms [DJP+20]. Its success begs the question:

What are the fundamental limits of machine learning?

There are several attempts to attack this question, but one particularly interesting route is
finding lower bounds on space and time complexity needed to solve a particular problem. With
lower bounds on say, deep learning problems, we can establish problems that can for sure not
be solved with deep learning, which would allow us to further map out the landscape of which
questions can be solved.

However, the history of finding lower bounds in complexity theory has been largely disap-
pointing. In fact, we still do not know if there exist problems in PSPACE which are not in P, as
determining whether P = PSPACE is still a longstanding open problem.

We focus on space lower bounds in particular, because a fairly distinctive aspect of deep
learning algorithms is that they use a relatively small amount of memory. Consider, say, stochastic
gradient descent (for simplicity, let the batch size be one). Then, given a stream of samples,
stochastic gradient descent uses space equal to D, where D is the number of parameters in the
deep model. The result proven by Raz, then, is surprising in that it shows that to learn precisely a
D-parameter model we may need D2 space. While this result somewhat resembles previous work
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in this area like [SSSS17], which studies gradient descent, Raz’s result is unique in that it makes no
assumptions on the algorithm used, instead showing that the space tradeoff is intrinsic to a wide
swath of problems and cannot be avoided.

2 Preliminaries

In this section, we describe the setup of the problem and introduce notations. We have a learning
problem over parameters Θ and inputs X so that our concept and hypothesis class (note that we
are operating in the exact learning problem) is fθ(x).

2.1 Model: Streaming and Branching Programs

In most complexity theory problems, the input is not considered to be part of the space usage. Yet
in this question, not including the input as part of the space would be far too generous – observe
that, for example, you could solve parities with almost no effort if there were no time constraints,
as you could just try every single solution. This motivates a streaming model, where at each step
you receive one input, and you are forced to process it then and there (possibly by storing it).

If we were allowed to hold all the input in memory at the same time, this problem would be
much easier. However, in this problem we consider a streaming model where the storing input
would count against our space usage. This somewhat restrictive model is used because in practice,
many algorithms (such as all first-order methods) do satisfy this condition with limited space,
even though the input is not counted.

The main result of the paper is stated in terms of branching programs, which are a natural model
of computation to use in this analysis because they accurately capture the most general notion of
space complexity. Branching programs are essentially machines that enable infinite complexity of
computation, but have a limited amount of space as determined by the logarithm of the size of the
branching programs. One way to think about branching programs is as directed acyclic graphs,
where each edge corresponds to learning some additional information.

In the branching program model of the learning problem, the branching program B has m
layers L1, L2, . . . , Lm, each consisting of 2k vertices, where k is the space allocated to the program.
Edges go from layer Li−1 to layer Li and are labeled with (xi, yi), corresponding to the program
learning Mθ(xi) = yi. Note that this model places no limits on the computational power of the
learning problem, and is essentially purely geometric.

2.2 Main Result

We can now represent a learning problem as a |Θ| × |X | matrix M where Mij = fθi(xj). Now,
suppose that σmax(M

⊤) ≤ |X |1/2 · |Θ|1/2−ϵ (noting that in general, σmax(M
⊤) ≤ |X |1/2 · |Θ|1/2).

Then, the main theorem of [Raz17] states that

Theorem 2.1. Let Θ,X be two finite sets. Let n = log2 |Θ|. Let M : Θ×X → {−1, 1} be a matrix, such
that ∥M⊤∥2 ≤ 2γn (where γ < 1 is not necessarily a constant, but (1− γ) · n → ∞ (when n → ∞)).

For any constant c′ < 1
3 , there exists a (sufficiently small) constant ϵ′ > 0, such that the following holds:

Let c = c′ · (1− γ)2, and let ϵ = ϵ′ · (1− γ). Let B be a branching program of length at most 2ϵn and width
at most 2cn2 for the learning problem that corresponds to the matrix M . Then, the success probability of B
is at most O(2−ϵn).
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3 Key Parts of the Analysis

3.1 Motivating the Spectral Norm Condition

At first, the spectral norm condition may seem a little strange. Why does ∥M⊤∥ being low
correspond to the problem being hard? Here it is useful to consider the role of the matrix M⊤.
Suppose that we had a prior on Θ given by the vector v ≥ 0. Then, conditioned on this, what’s the
vector [

E[fθ(x1)] E[fθ(x2)] . . . E[fθ(xn)]
]⊤

?

It’s equal to M⊤v, whose norm is bounded by ∥M⊤∥2∥v∥2 Thus, one way to interpret the
condition is that a small amount of information on θ (symbolized by a small value of ∥v∥2)
corresponds to a small average-case knowledge of xi (symbolized by a small value of ∥M⊤v∥2).
This step is crucial to the proof, as it provides a characterization for the hardness of the learning
problem. Intuitively, if ∥M⊤∥2 is low, its very hard to know the value of fθ(x) if we don’t know
the value of x. The parity functions are a particularly striking example of this. Even if you’ve
narrowed down the set of θ’s to two possibilities, for example, we still do not know the value of
fθ(x) on 50% of all the inputs.

3.2 A Walk on the Branching Program

The branching program is a layered graph whose leaves correspond to output values of θ. For a
vertex v of the branching program, we let Pθ|v denote the probability distribution on Θ correspond-
ing to the distribution of the outputs conditioned on the branching program having reached v.
One way to think about this is a posterior. Similarly, we define Pθ|e as the probability distribution
of the output condition on having crossed edge e.

We define a truncated path on the branching program which is the same as the regular path of
the branching program, but may stop before reaching a leaf. Specifically, the path ends on a vertex
v if one of these conditions holds:

• The vertex v is a significant vertex, meaning

∥Pθ|v∥2 > 2δn · 2−n

for some specific constant δ.

• The correct value θ∗ is a significant value, meaning

Pθ|v(θ
∗) > 22(δ+ϵ)n · 2−n.

(The set of θ′ satisfying Pθ|v(θ
′) > 22(δ+ϵ)n · 2−n is denoted Sig(v).)

• The next input (xi+1, yi+1) is a bad edge, meaning

∥(M⊤ · Pθ|v)(xi+1)∥ ≥ 2(δ+γ+ϵ)n · 2−n.

The main idea is that these truncations correspond to situations where a large amount of infor-
mation is known about θ, but they also occur rarely, implying that the branching program cannot
effectively learn θ. The central claim shows that the probability of reaching a significant vertex (the
first condition for truncation) is small.

Theorem 3.1. The probability that T reaches a significant vertex is O(2−en).
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Theorem 3.1 implies that the other conditions for truncation (x being a significant value, or
the next edge being a bad edge) also occur with small probability. To prove Theorem 3.1, we fix
a significant vertex s and show that the probability of reaching s is small. Then taking a union
bound over significant vertices proves the result.

3.3 Measuring Progress of the Branching Program

For each layer i of the branching program, let Li be the set of vertices on layer i and Γi be the set
of edges from layer i− 1 to layer i. We then define

Zi =
∑
v∈Li

Pr(v) · ⟨Pθ|v,Pθ|s⟩n,

Z ′
i =

∑
e∈Γi

Pr(v) · ⟨Pθ|e,Pθ|s⟩n.

Intuitively, these are measures of progress toward reaching a distribution similar to Pθ|s. When
Pθ|v is very close, Pθ|s it will mean that this vertex has basically “figured it out.”

Lemma 3.2.
Zi ≤ Z ′

i.

Proof. Omitted.

The goal is to show thatZi grows slowly with i. The key claim is the following, which expresses
a bound on the progress made by the branching program.

Lemma 3.3. For every vertex v of B with Pr(v) > 0,∑
e∈Γout(v)

Pr(e)

Pr(v)
· ⟨Pθ|e,Pθ|s⟩βn ≤ ⟨Pθ|v,Pθ|s⟩βn · (1 + 2−1.9ϵn) + (2−2n+2)βn.

This lemma is the hardest step of the proof and we will not prove it in full detail. We first show
how this leads to bounds on Zi.

Lemma 3.4. For every i ∈ {1, . . . ,m},

Zi ≤ Zi−1(1 + 2−1.9ϵn) + (2−2n+2)βn.

Proof. Combining Lemmas 3.2 and 3.3, we have

Zi ≤ Z ′
i

=
∑
e∈Γi

Pr(e)⟨Pθ|e,Pθ|s⟩βn

=
∑

v∈Li−1

Pr(v) ·
∑

e∈Γout(v)

Pr(e)

Pr(v)
⟨Pθ|e,Pθ|s⟩βn

=
∑

v∈Li−1

Pr(v) ·
(
⟨Px|v,Px|s⟩βn · (1 + 2−1.9ϵn) + (2−2n+2)βn

)
= Zi−1 · (1 + 2−1.9ϵn) +

∑
v∈Li−1

Pr(v) · (2−2n+2)βn

= Zi−1 · (1 + 2−1.9ϵn) + (2−2n+2)βn.
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We can now give an upper bound on Zi.

Lemma 3.5. For every i ∈ {1, . . . ,m},

Zi ≤ 22(β+ϵ)n−2βn2
.

Proof. We use lemma 3.4. By expanding and inducting, we have

Zi ≤ Z0x
i + xi−1y + xi−2y + · · ·+ xy + y

where x = 1+ 2−1.9ϵn and y = 2−(2n−2)βn. Note that Z0 = (2−2n)βn < y and x > 1. The right hand
side is increasing with i and at i = m, we have the upper bound

Zi ≤ mxmy

= 2ϵn(1 + 2−1.9ϵn)m(2−(2n−2)βn)

≤ 2ϵn · 2 · 2−2βn2 · 22βn

≤ 22(β+ϵ)n−2βn2
.

using m = 2ϵn.

We now present one step in the proof of Lemma 3.3 to show where the singular value condition
comes into play.

Lemma 3.6. Define a function f : Θ → R+ by

f(θ′) =

{
0 if θ′ ∈ Sig(v)

Pθ|v(θ
′)Pθ|s(θ

′) if θ′ /∈ Sig(v)

and let
F =

∑
θ∈Θ

f(θ).

Then for every edge e ∈ Γout(v), there exists a normalization factor

ce >
1

2
− 2 · 2−2ϵn

such that

Pθ|e(θ
′) · Pθ|s(θ

′) =

{
0 if Mθ(a) ̸= b

f(θ′) · c−1
e if Mθ(a) = b

and furthermore
⟨Pθ|e,Pθ|s⟩ < 2−n · (F + |(M⊤ · f)(x)|) · (1 + 2−2ϵn+3).

Proof. For brevity, we omit the part regarding the normalization factor. We have:

⟨Pθ|e,Pθ|s⟩ = E[Pθ|e(θ) · Pθ|s(θ)]

= c−1
e · 2−n

∑
θ|Mθ(x)=y

f(θ)

= c−1
e · 2−n

(
F + b · (M⊤ · f)(x)

2

)
≤ (2ce)

−1 · 2−n ·
(
F + |(M⊤ · f)(x)|

)
≤ 2−n ·

(
F + |(M⊤ · f)(x)|

)
· (1 + 2−2ϵn+3).
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With this lemma in mind, the term M⊤ · f allows us to use the singular value condition to
further work on computing upper bounds. The proof of Lemma 3.3 proceeds by splitting into
cases F ≤ 2−n and F ≥ 2−n, extracting an ∥M⊤∥22 term in the latter case.

4 Applications to Cryptography

Space-lower bounds are a powerful tool in our arsenal of theoretical techniques. When we can
prove that a task requires a significant amount of space, there are countless applications. For
example, a topic even hotter than machine learning at the moment is the blockchain algorithm for
securing a distributed ledger. Cryptocurrencies are often criticized for their heavy environmental
impacts (among other things). This stems from the proof-of-work scheme that is required to prove
the existence of a scarce resource, which in the case of Bitcoin is computation time. This takes a
toll on the environment due to soaring energy bills and electricity costs. However, proof-of-space
algorithms may be able to capture the same Byzantine fault tolerance benefits, without nearly as
much energy expenditure.

Perhaps most notably, FileCoin is a recently developed cryptocurrency which aspires to be a
secure segment of IPFS, the largest decentralized filesystem in the world. Receiving FileCoin is
contingent on providing space to others, which itself depends on proving that you have the space
through proofs of space. It’s possible that a ParityCoin could be developed, based on this result or
similar results of this nature.
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