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Introduction

We discuss the Lorenz system and its various bifurcations.

Background information comes from Chapter 7 of Clark Robinson’s book, An
Introduction to Dynamical Systems [Rob12].

Definition (Flow)

Let the flow of a system of differential equations be denoted ϕ(t; x), which we
treat as a continuous dynamical system. In this case, we write ϕ(t; x) = ϕt(x) to
mean the evolution of a point x ∈ Rn after time t of the differential equation.

Can flows of autonomous ODEs exhibit chaotic behavior in their attracting sets?
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Examples of Flows

Example
Suppose that we have the differential equation ẋ = 3|x|2/3. What is ϕt(x)?

ϕt(x) = ( 3
√

x + t)3.

Example
What is the flow of a first-order linear differential equation, ẋ = Ax?

ϕt(x) = eAtx.

Here, note that the multiplier eAt is a matrix exponential.
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Poincaré-Bendixson Theorem
Theorem ([Tes12])
Given a differentiable autonomous dynamical system defined on an open subset
of R2, every non-empty compact ω-limit set of an orbit, which contains only
finitely many fixed points, is either

a fixed point,
a periodic orbit, or
a connected set composed of a finite number of fixed points, together with
homoclinic and heteroclinic orbits connecting these.

Here, autonomous means without a time-dependent driving force. For example,
for constants k, α > 0, we would write that ẍ = −kx is autonomous, but
ẍ = −kx + sinαt is not.
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Chaotic Attractors
We can’t have chaotic behavior in attracting sets for 1-dimensional or
2-dimensional autonomous dynamical systems on the reals.
Anti-example: double pendulum is four-dimensional, state ⟨θ1, θ̇1, θ2, θ̇2⟩.
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Chaotic Attractors

The Lorenz system was the first such
example of chaos, a 3-dimensional
nonlinear system of differential
equations with complicated
behavior in the limit set.

Lorenz modeled convection in the
atmosphere.
Ueda also found a periodically
forced nonlinear oscillator in two
dimensions that had complicated
dynamics [Ued91].
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The Lorenz System

The Lorenz system is a system of three nonlinear ordinary differential equations,
given by

ẋ = −σx + σy,
ẏ = rx − y − xz,
ż = −bz + xy.

Here, σ, r, and b are three positive parameters.1 We focus on the special case
where σ = 10 and b = 8/3, but we will vary the value of r. Lorenz originally
studied r = 28 when modeling convection in the atmosphere.

1Some sources replace r by ρ and b by β.
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Fixed Points of the Lorenz System

By examining the differential equation, fixed points must satisfy x = y,
x(r − 1− z) = 0, and bz = x2. In other words, we can just look at the behavior in
the x–z plot, projected from the plane y = x. There are up to three fixed points:

When x = 0, we also have y = z = 0, so the origin is a fixed point.
Otherwise, assume that z = r − 1. For another fixed point, we need bz = x2,
so r > 1. Then, we have two other fixed points, at x = y = ±

√
bz and

z = r − 1.
So when r > 1, our fixed points are

(0, 0, 0), (
√

bz,
√

bz, r − 1), and (−
√

bz,−
√

bz, r − 1).
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Repelling Origin
Next let’s look at the behavior at the origin. The eigenvalues of the Jacobian at
the origin are

λs = −b < 0,

λss =
−(σ + 1)−

√
(σ + 1)2 + 4σ(r − 1)

2
,

λu =
−(σ + 1) +

√
(σ + 1)2 + 4σ(r − 1)

2
.

When the discriminant is negative, all three eigenvalues have negative real
part, so the origin is just attracting (boring!).
When r > 1, the origin is a fixed point of saddle type, with dimension-2
stable manifold and dimension-1 unstable manifold (unstable!).
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Other Fixed Points

The other two fixed points when r > 1 are called P+ and P−.
The characteristic polynomial of the Jacobian is a cubic, and one of the
eigenvalues is always guaranteed to be a negative real number. This
corresponds to the normal to the Lorenz attractor (a 2D manifold).
Specifically, the characteristic polynomial is

pr(λ) = λ3 + λ2(σ + b + 1) + λb(r + σ) + 2bσ(r − 1) = 0.

Luckily, this is a pretty simple cubic. Fixing σ = 10 and b = 8/3, we can graph
this in λ and see how the roots change as we vary r.
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Other Fixed Points (cont.)
When 1 < r ≤ 1.3456, there are three negative real eigenvalues. The P± are
attracting.

When r > 1.3456, there is one negative real eigenvalue and two complex
eigenvalues.

• When r < r1 = 470
19 ≈ 24.74, the complex eigenvalues have negative real part,

so both of the fixed points are still attracting.
• When r = r1, the complex eigenvalues are pure imaginary, and they have zero
real part. This means that there is some “center manifold” where the system
attracts. This is known as a subcritical Hopf bifurcation, as the stability of the
system changes, and there momentarily exists an unstable periodic orbit.

• When r > r1, the complex eigenvalues have positive real part.
• When r = 28, the system demonstrates chaotic behavior [Tuc99].

Sage code is available at https://tinyurl.com/sage-lorenz.
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Global Bifurcations
Another interesting behavior is that
there exists a
homoclinic bifurcation.

If you start at the origin and follow
the unstable manifold trajectory
outward, you’ll eventually end up
attracting to a limit cycle in one of
the two “lobes” when r is small.
As r increases, the limit cycle grows
until it intersects with the saddle
point at the origin for
r = r0 ≈ 13.926. This is called a
homoclinic orbit [VA98].
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Discussion: Bifurcation Experiments

https://observablehq.com/@ekzhang/lorenz-system
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Limit Sets of Flows

Definition (ω-limit set)

Given a flow ϕ and an initial point x ∈ Rn, we define the ω-limit set of x by

ω(x) =
∩
n∈N

cl({ϕt(x) : t ≥ n}),

where cl(S) denotes the closure of a set S. This is the set of points that the orbit
of x gets arbitrarily close to, in the forward limit.

How does this definition differ from ω(x) for a discrete dynamical system?
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Trapping Regions
Definition (Trapping region)

A trapping region for a flow ϕ(t; x) is a compact set U such that ϕ(t;U) ⊂ int(U)
for all t > 0.
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Trapping Regions (cont.)
Theorem

The boundary of a trapping region U is moved a positive distance into its interior
for any positive amount of time, t > 0.

Proof.

The boundary of a compact set is compact, so we can apply the extreme value
theorem. For any t > 0, ϕt : Rn → Rn is continuous, so

min
x∈bd(U)

{
min
y∈U

∥y − ϕt(x)∥
}

> 0.
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Quantifying an “Energy” Function

Definition (Lyapunov function)

A Lyapunov function for an autonomous dynamical system ẏ = g(y) is a C1

function L : Rn → R satisfying −∇L · g > 0 for some region of Rn.

This definition is by convention, and it is engineered so that L(ϕt(y0)) is
monotonically decreasing as t advances. (Why?)

Solution: Just use the chain rule,

d
dt L(ϕt(y0)) = ∇L · dϕt(y0)

dt = ∇L · g < 0.
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Lyapunov Functions in Practice

Using this definition, we can define a trapping region using a test function L
as the set

U = L−1((−∞,C]) = {x : L(x) ≤ C},

which is closed because preimages of continuous functions preserve
open/closed sets.
If the gradient of L is nonzero on L−1(C), then we also get that
int(U) = L−1((−∞,C)).

Question: What if we only have −∇L · g > 0 for some region outside a
compact set U, i.e., where L(x) > C? Is it still good enough?
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Attractors
Definition (Attracting set)

A set A is called an attracting set for the trapping region U if

A =
∩
t≥0

ϕt(U).

Equivalently, A is the largest invariant set contained in U.

Definition (Attractor)

An attracting set A is called an attractor if there is no proper subset 0 ̸= A′ ⊊ A
that is also an attracting set.
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Lorenz Attractor
Theorem. The trajectories for the Lorenz system tend to a set of zero volume.

Proof.

The change in volume of an orbit over time is equal to the surface integral of the
vector field F. By the divergence theorem, this is also equal to the integral of
∇ · F over the volume. For the Lorenz system, we have ∇ · F = −σ − 1− b, which
is a negative constant, so

V̇(t) = −(σ − 1− b)V(t) =⇒ V(t) = e−(σ+1+b)tV(0).

Since the limit volume cannot be infinite (which can be shown using a very
coarse Lyapunov function, bounding by an ellipsoid), we conclude that the
volume of the limit set must be zero, since V(t) decays exponentially.
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Mathematica Notebook

Pay attention to the track of the ball in the animation. Try to see if it is
possible to predict the specific trajectories of the ball at different
parameters.
Specifically, try to find the bifurcation values brought up earlier in the
presentation and model what happens to the ball in these scenarios.
Finally, try to make sense of the rates of change in the trajectory as it relates
to the three central equations governing the Lorenz System.
Feel free to play around with the Lorenz equations. For example, many
applications use the Lorenz system but with the first equation reading
ẋ = −σ(x − y − A sin(ωt)), where ω is between 0 and 1.
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History of the Lorenz System

Fascinated with meteorology as a
child, he spent his post-college life
working as a weather forecaster in
the Army Air Corps for World War II.
Advent of the computer encouraged
him to build weather simulations.
Originally had set of 12 differential
equations with 12 variables, but
eventually cut it down to the three
differential equations we see today,
the Lorenz system.

Edward Lorenz (1917-2008)
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An Interesting Story

Lorenz was running his simulations many times, realizing that the weather
patterns were seemingly changing in a pseudo-periodic orbit without ever
repeating the same conditions again.
He decided to start the computer at a specific weather sequence to get a
better view of it. However, when he started the simulation, the result gave
completely different weather patterns than he had experienced in previous
simulations.
The error occurred because he inputted the initial conditions with three
significant figures when the computer was working in six. This minute
difference caused the entire system to change and created the basis for
chaotic systems today.
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The Lorenz System of Atmospheric Flow
In the Lorenz system (equations posted here again for reference), we can
attempt to explain some of the variables and constants:

ẋ = −σx + σy, ẏ = rx − y − xz, ż = −bz + xy.

σ represents the ratio of fluid viscosity to thermal conductivity. Essentially
the ratio of how quickly fluid flows through the system to how effective it
absorbs heat in contact with other molecules (related to Prandtl Number).
r represents the difference in temperature between the top and bottom of
the atmospheric column (related to Rayleigh Number).
b simply describes the bounds of our system, more specifically the ratio of
the width to height (2D cross-section).
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The Lorenz System of Atmospheric Flow
In the Lorenz system (equations posted here again for reference), we can
attempt to explain some of the variables and constants:

ẋ = −σx + σy, ẏ = rx − y − xz, ż = −bz + xy.

x, y, z all vary dynamically in time. x is the convective flow (motion of heat
through the atmosphere as hot air rises). Positive x pertains to clockwise
motion.
y is the horizontal temperature distribution, found by taking the difference
between ascending and descending currents. Positive y pertains to warmer
currents on the right (correlates strongly with positive x)
z is the vertical temperature distribution.
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Deriving the Intuition Behind r

The main source of heat to the surface of Earth is via the Sun (internal energy
from the Earth heats the surface much less). To find r, we must first define the
flux of Sun into Earth’s orbit ( W

m2 ), given by

F0 =
L

4πd2 ,

where L is the luminosity of the Sun, in watts, and d is the Earth’s orbital
semi-major axis.
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Continuing Derivation of r

Now the amount that the Earth absorbs, in power (W), is:

Pin = πr2(1− A)F0,

where A is the planetary albedo and r is the radius of the Earth.
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Continuing Derivation of r

The Stefan-Boltzmann law tells us that the radiant flux emitted from the Earth is

F1 = σT4,

where T is the temperature of Earth and σ = 5.67 ∗ 10−8W/m2/K4 (Stefan’s
constant). The total radiation that Earth gives out is this flux/area times the
surface area of the earth, which is just 4πr2. Setting Pin = Pout to satisfy
conservation of energy, we get the equation:

πr2(1− A)F0 = 4πr2σT4 =⇒ σT4 =
1

4
(1− A)F0.
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Continuing Derivation of r
Solving the equation in the previous slide for T, using the appropriate values
for L, d, σ, r and approximating Albedo to be 0.3 on Earth, we get that the
equilibrium temperature on Earth should be around 256 Kelvin.
However, we see that the average temperature on Earth is actually 288
Kelvin (15 degrees Celsius). While a small amount of the error can be
explained by the assumptions surrounding Stefan’s Constant, the majority of
the error comes from the presence of Greenhouse Gasses in the atmosphere.
These gasses warm up the surface, trapping air in a convective cycle within
the troposphere. Thus we expect r to be 288− 256 Kelvin, or 32. Ignoring
smaller sources of error between observational and empirical data that is
beyond the scope of this presentation, we see that the assumption of r = 28
is reasonable.
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Significance of Lorenz in Atmospheric Dynamics

Allows us to see how different emissions spread by convection through the
atmosphere.
Allows us to model weather and wind more accurately.
Allows us to model the effect of anthropogenic emissions on vertical and
horizontal temperature gradients.

The Lorenz Attractor and Bifurcations Ria Dhull, Jonathan D’Souza, Eric Zhang 34 / 37



Agenda

1 Introduction

2 The Lorenz System

3 Lyapunov Functions and Attractors

4 Mathematica Visualizations

5 Applications

6 References

The Lorenz Attractor and Bifurcations Ria Dhull, Jonathan D’Souza, Eric Zhang 35 / 37



References

Rex Clark Robinson.
An introduction to dynamical systems: continuous and discrete, volume 19.
American Mathematical Soc., 2012.
Gerald Teschl.
Ordinary differential equations and dynamical systems, volume 140.
American Mathematical Soc., 2012.
Warwick Tucker.
The Lorenz attractor exists.
Comptes Rendus de l’Académie des Sciences-Series I-Mathematics,
328(12):1197–1202, 1999.

The Lorenz Attractor and Bifurcations Ria Dhull, Jonathan D’Souza, Eric Zhang 36 / 37



References

Yoshisuke Ueda.
Survey of regular and chaotic phenomena in the forced duffing oscillator.
Chaos, Solitons & Fractals, 1(3):199–231, 1991.
AF Vakakis and MFA Azeez.
Analytic approximation of the homoclinic orbits of the Lorenz system at
σ = 10, b = 8/3 and ρ = 13.926 . . ..
Nonlinear Dynamics, 15(3):245–257, 1998.

The Lorenz Attractor and Bifurcations Ria Dhull, Jonathan D’Souza, Eric Zhang 37 / 37


	Introduction
	The Lorenz System
	Lyapunov Functions and Attractors
	Mathematica Visualizations
	Applications
	References

