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Abstract

These are notes for Harvard’s Math 55a, the first semester of the year-
long mathematics course described as “probably the most difficult under-
graduate math class in the country.” This year, the class was taught by
Joe Harris1. The main topics covered were group theory, abstract linear
algebra, and the representation theory of finite groups.

Course description: A rigorous introduction to abstract algebra,
including group theory and linear algebra. This course covers the equiva-
lent of Math 25a and Math 122, and prepares students for Math 123 and
other advanced courses in number theory and algebra.
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1 September 4

Today is the first lecture! We start with an overview of the course before diving
straight into group theory. There are so many students today that people are
sitting on the floor to hear Joe Harris’s lecture, but the class will narrow down
quickly in the coming few weeks.

1.1 Course Content

There will be four primary segments, each covering a different topic.

1. Group theory (Artin, Algebra)

2. Fields + vector spaces (Axler, Linear Algebra Done Right)

3. More group theory

4. Representation theory

1.2 Groups

Let’s get started like any introductory algebra course, by introducing groups.

Definition 1.1 (Group). A group G consists of a set S with a law of composition

m : S × S → S,

(a, b)→ ab,

satisfying the following axioms:

• (Identity) A distinguished identity element e exists (and also must be
unique because e = ee′ = e′).

∃e ∈ S : ∀a ∈ S, ea = ae = a.

• (Associativity) The group operation is associative.

∀a, b, c ∈ S : (ab)c = a(bc).

• (Inverse) Each element a has an inverse element b = a−1 (which is also
two-sided and unique).

∀a ∈ S, ∃b ∈ S : ab = e.

We can make variations on groups as an algebraic structure by adding or
removing properties as desired.

Definition 1.2 (Abelian group). A group G is called abelian if its binary op-
eration is commutative, i.e.,

∀a, b ∈ G : ab = ba.
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Definition 1.3 (Monoid). A structure G = (S,m) is called a monoid if it
satisfies the above closure and associativity properties, but inverses do not nec-
essarily exist.

Example 1.1 (Numerical examples). We present common examples of groups.

• Groups under addition include Q,R,C, as well as Z and Z/nZ.

• The unit interval R/Z = [0, 1) ⊂ R is a group under addition modulo 1.

• The natural numbers N = {0, 1, 2, . . .} are only a monoid.

• If you remove the zero element (additive identity) to get Q∗,R∗,C∗, these
are groups under multiplication.

• The complex numbers on the unit circle S1 = {z ∈ C | |z| = 1} form a
group under multiplication, which is isomorphic to R/Z.

Definition 1.4 (Cardinality). The cardinality or size of a group G is just the
cardinality of its underlying set, denoted as |G|.

Example 1.2 (Trivial group). The group consisting of one element G = {e} is
called the trivial group.

Example 1.3 (Symmetric group). If S is any set, then the permutations of S
are defined as the set of bijections between S and S

Perm(S) = {1-to-1 mappings S 7→ S}.

In particular, if S = {1, 2, . . . , n}, then

Perm(S) = Sn,

which is called the symmetric group on n symbols and has cardinality n!.

Example 1.4 (Symmetry groups). Given some geometric figure X ⊂ R2 or
R3, we can look at rotations of R2 or R3 that carry X to itself. We can also
consider reflections. These give rise to the following symmetry groups:

1. Equilateral triangle: Z/3Z for rotations, or S3 for rotations and reflections.

2. Square: Z/4Z for rotations, or D8 for rotations and reflections.

3. Circle: S1 for rotations.

Example 1.5 (Linear transformations). The general linear and special linear
groups are sets of n × n matrices over a given ring R under matrix multipli-
cation. These are denoted GLnR and SLnR respectively, either with nonzero
determinant (general) or singular determinant (special).

Example 1.6 (Three kinds of cardinality). Based on cardinality, we can classify
groups into three broad categories.
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1. Finite groups Z/nZ, Sn

2. Countable groups Q, Z, Zn

3. Continuous groups R, C, GLnR, etc.

Now that we have examples of groups, we can also take operations on these
groups. The most basic of these is the product.

Definition 1.5 (Direct product). The product of two groups G and H is the
group of pairs of elements between the two groups (Cartesian product), where
group multiplication is taken independently:

G×H = {(a, b) | a ∈ G, b ∈ H}.

Example 1.7 (Finite vector spaces). Iterated products give us

Zn = {(a1, a2, . . . , an) : ai ∈ Z},

(a1, a2, . . . , an) + (b1, b2, . . . , bn) = (a1 + b1, a2 + b2, . . . , an + bn).

We can similar construct groups of n-tuples from other sets: Qn,Rn,Cn.

With generalized products between infinitely many groups, we can also con-
struct interesting examples such as

∏∞
i=0 R, which is the group of power series

over R.
Also, define the direct sum similarly to the product, except finitely many of

the terms must be nonzero. An example is
⊕∞

i=0 R = {(a0, a1, a2, . . .)}, which
is the group of polynomials under addition.
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2 September 6

Today we begin looking at relationships between groups.

2.1 Subgroups

Definition 2.1 (Subgroup). If G is any group, then a subgroup H ⊂ G is a
subset closed under composition and inversion, i.e.,

∀a, b ∈ H, ab ∈ H,
∀a ∈ H, a−1 ∈ H.

Note. Any subgroup must contain the identity e.

Definition 2.2 (Proper subgroup). A subgroup H ⊂ G is called proper if it
does not equal G itself. We denote this by H ( G.

Some examples of this include:

Z ⊂ Q ⊂ R ⊂ C,

S1 = {z ∈ C | |z| = 1} ⊂ C∗,

SLn R ⊂ GLn R.

With these definitions, we can then ask new questions like: what are all the
subgroups of Z?

Claim. All nontrivial subgroups of Z are of the form, for a ∈ Z>0,

Za = {na | n ∈ Z}.

Proof. Any nontrivial subgroup contains at least one nonzero element, and thus
a positive element. We can then take the minimum positive element a. If there
were to exist another element b such that a - b, we use the Euclidean algorithm
to derive a contradiction.

Lemma 2.1. Given group G, let H,H ′ ⊂ G be any two subgroups. Then,
H ∩H ′ is also a subgroup.

Proof. Simply check the composition and inverse properties.

Definition 2.3 (Subgroup generated by S). Given a group G and any subset
S ⊂ G, we can find the smallest subgroup containing S in two distinct ways,
namely ⋂

H⊂G
H⊃S

H = 〈S〉 = {a1a2a3 · · · ak | ai ∈ S ∪ S−1}.

The second equality here is based on the concept of a word in G, which is
mapping from a sequence of elements of G to a composition

(a1, a2, . . . , ak) 7→ a1a2 · · · ak ∈ G.
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2.2 Homomorphisms

We begin our study of structure-preserving maps between groups.

Definition 2.4 (Homomorphism). If G and H are groups, then a homomor-
phism f : G → H is a map of sets that respects (commutes with) the group
laws on G and H:

∀a, b ∈ G,
f(a)f(b) = f(ab)

f(a)−1 = f(a−1)

( =⇒ f(e) = e).

This can be represented compactly with the following commutative diagram.

G×G H ×H

G H

f×f

mG mH

f

Example 2.1 (Homomorphisms). We have the following simple examples:

• Z/mZ→ Z/nZ for n | m.

• Z→ Z/nZ.

• R→ (R>0,×). (Exponential map)

• Sn → Z/2Z. (Sign of a permutation)

• GLnR→ R×. (Determinant)

• Z→ G. (Taking n→ an)

Definition 2.5 (Order). Consider a group G, and its subgroup generated by
one element 〈a〉. The cardinality of this group is denoted by ord a, and it is the
smallest positive k such that ak = e.

Definition 2.6 (Kernel and Image). If G,H are any groups and ϕ : G→ H is
a homomorphism, then we define the kernel of ϕ to be

kerφ = {a ∈ G | ϕ(a) = e} ⊂ G.

Similarly, the image of ϕ is

imφ = {b ∈ H | b = φ(a) for some a ∈ G} ⊂ H.

These are respectively subgroups of G and H.

Definition 2.7 (Isomophism). If a homomorphism ϕ : G → H satisfies both
kerϕ = {e} (injective), as well as imϕ = H (surjective), then it is a bijec-
tive mapping between the two groups. This means that G, H are essentially
equivalent up to a relabeling of elements, and ϕ is an isomorphism.
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Proposition 2.2 (Cayley’s theorem). Every finite group G is isomorphic to a
subgroup of Sn for n = |G|.

Proof. We take the map ϕ : G → Perm(G), which sends g to the bijection
mg : G→ G defined by left-multiplication, i.e.,

mg(h) = gh.

To finish the proof, we need to show that ϕ is associative and injective. These
follow because

(gh)k = g(hk) =⇒ mgh(k) = (mg ◦mh)(k),

mg(e) = g 6= g′ = mg′(e).

Exercise 2.1. How many groups of order 2 are there? How about groups of
order 3, and order 4? (Answer: Z/2Z,Z/3Z,Z/4Z,Z/2Z× Z/2Z).

2.3 Interlude on Set Theory

Assume we are given a map f : S → T .

Definition 2.8 (Injection). f is injective if ∀a, b ∈ S,

f(a) = f(b)⇐⇒ a = b.

Definition 2.9 (Surjection). f is surjective if ∀c ∈ T ,

∃a ∈ S : f(a) = c.

Definition 2.10 (Bijection). f is bijective if it is both injective and surjective.

Definition 2.11 (Cardinality). We define cardinality as having the property
that S and T have the same cardinality if there exists a bijection between them
|S| = |T |. Also, if there exists an injection f : S → T , then |S| ≤ |T |.

Proposition 2.3. If |S| ≤ |T | and |T | ≤ |S|, then there exists a bijection
between S and T , i.e., |T | = |S|.

Proof. This is nontrivial and requires argument, see Halmos NST p. 88.

Example 2.2 (Countable sets).

|N| = |Z| = |Q|.

To see that |N| = |Z|, take

f : Z ∼−→ N

: n→

{
2n, n ≥ 0

−(2n+ 1), n < 0.
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Proposition 2.4 (Cantor’s diagonal argument). There exist uncountable sets;
in particular, |R| 6= |Z|.

Proof. Assume there exists a surjection ϕ from Z to R and write down their
binary digits in an infinite grid. Then, you can generate a new real number not
in the image of ϕ by taking the digits along the diagonal and inverting them,
hence ϕ is not a surjection.
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3 September 9

Today we finish our interlude on set theory, and learn more about groups, ho-
momorphisms, and in particular: normal subgroups.

3.1 Interlude on Set Theory (cont.)

Note that |R| = |(0, 1)| by the bijection t 7→ t−0.5
t(1−t) . Lots of infinite sets actually

have the same cardinality; for example, the set of all sequences of real numbers.

Proposition 3.1. |RN| = |R|

Proof. An explicit bijection is to take a decimal expansion 0.r1r2r3r4 . . . of a
real number in x ∈ (0, 1), then generate an infinite sequence of reals as follows:

x1 = 0.r1r3r5r7 . . . ,

x2 = 0.r2r6r10r14 . . . ,

x3 = 0.r4r12r20r28 . . . ,

x4 = 0.r8r24r40r56 . . . ,

...

In each new decimal, we take every other digit of the decimal expansion, so we
are left with an infinite sequence of digits each time, allowing us to generate a
surjective mapping from R to RN.

Alternatively, we can prove this more elegantly using the fact that |N| =
|N× N|, as well as |R| = |P(N)|. This means that

R = P(N) = P(N× N) = N× N→ {0, 1} = N→ N→ {0, 1} = N→ R.

Proposition 3.2 (Cantor’s Theorem). If S is any set, then its power set

P(S) = {all subsets of S} = {0, 1}S

has strictly larger cardinality.

Proof. Suppose for the sake of argument that there exists a bijection φ : S →
P(S). Then, consider the subset A ⊂ S defined as

A = {s ∈ S : s 6∈ φ(s)}.

However, now we consider the question of whether A is in the image of itself,
φ(A). Either if A ∈ φ(A) or A 6∈ φ(A), we end up with a contradiction due to
the definition of A, and thus φ cannot exist.

Corollary 3.2.1. |RR| ≥ |{0, 1}R| > |R|.
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3.2 Equivalence Relations

Definition 3.1 (Equivalence relation). Let S be any set. An equivalence re-
lation ∼ on S is a relation that holds between certain pairs of elements of S,
denoted a ∼ b, which satisfies 3 axioms:

• (reflexivity) a ∼ a.

• (symmetry) a ∼ b⇐⇒ b ∼ a.

• (transitivity) ∀a, b, c ∈ S : a ∼ b ∧ b ∼ c =⇒ a ∼ c.

A more precise but equivalent definition is as follows:

Definition 3.2 (Equivalence relation, formal). An equivalence relation on S is
a subset Φ of S × S such that

• Φ ⊃ ∆ = diagonal = {(s, s)} ⊂ S × S.

• Φ→ Φ under the involution swapping elements, S × S → S × S.

• Consider the set of 3-tuples S × S × S. Let πij be the map that takes
indices i and j from the tuple and drops the last element. Then

π13(π−1
12 (Φ) ∩ π−1

23 (Φ)) ⊂ Φ.

Based on which elements are equivalent under this relation, we can split up
S into several equivalence classes, which provide the same information.

Definition 3.3 (Equivalence class). Given an equivalence relation ∼ on S, an
equivalence class is the subset of all elements of S equivalent to a given element

a ∈ S 7→ {s ∈ S | s ∼ a}.

All equivalence classes are distinct, and their union is all of S.

Definition 3.4 (Partition). A partition of S is an expression of S

S =
∐

Sα

as a disjoint union of nonempty subsets.

In general, these three definitions are evidently equivalent, and we have

{equivalence relations on S} ↔ {partitions of S} ↔ {surjections S
f−→ T}.
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3.3 Groups

Recall that a homomorphism G
φ−→ H between groups is a map that preserves

the structure of group multiplication. We can define the kernel and image of φ
as before. Notice that if K = imφ ⊂ H, we can factor φ as

G→ K → H.

Thus, we are primarily interested in surjective homomorphisms φ : G→ K with
kernel H ⊂ G. We examine the partition associated with φ,

φ−1(k) = {g ∈ G | φ(g) = k}.

Proposition 3.3. Given surjective homomorphism φ : G→ K with kernel H,
we have that

φ(g) = φ(g′)⇐⇒ g′ = gα, α ∈ H.

Proof. For any g0 ∈ φ−1(k) and h ∈ H, we have that

φ(g0h) = φ(g0)φ(h) = k,

g0 ∈ φ−1(k) =⇒ g0h ∈ φ−1(k).

Also, conversely we have that if g, g′ ∈ φ−1(k), then φ(g−1g′) = e and

φ(g−1g′) = φ(g−1)φ(g′) = e =⇒ φ(g′) = k.

With this proposition, we switch gears and now turn to describing groups in
general by talking about their partitions into cosets.

Definition 3.5 (Cosets). If H ⊂ G is any subgroup, a left coset of H is a subset
of the form gH for g ∈ G.

Proposition 3.4. Any two cosets are equal or disjoint. In particular, if G is
finite, then

G =
∐

α∈G/H

αH.

Proof. Straightforward computation. If gH ∩ g′H 6= ∅, then ∃α = gh = g′h′, so

g = g′h′h−1.

However, h′h−1 ∈ H by closure, so g and g′ are in the same left coset.

Corollary 3.4.1 (Lagrange’s Theorem). The order of any subgroup H of a
finite group G divides order of G. In particular,

|G| = |H| · |G/H|.

We call |G/H| the index of H in G.
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After seeing these two similar concepts of cosets and surjective homomor-
phisms, we ask the natural question: when is a subgroup the kernel of some
surjective homomorphism? If it were the kernel of some homomorphism, we
could “factor” the group into kernel and image. This motivates the following
definition:

Definition 3.6 (Normal subgroup). If G is any group, and H ⊂ G is any
subgroup, then H is normal if the left cosets of H in G are equal to the right
cosets of H in G. Equivalently, for all g ∈ G,

gH = Hg ⇐⇒ gHg−1 = H.

Proposition 3.5. The normal subgroup condition is necessary and sufficient
for the existence of a surjective homomorphism with kernel H.

15



4 September 11

Today we cover a variety of topics, including order and quotient groups. We
also do a case study in properties of the symmetric group.

4.1 Order

We can consider sequences of elements a, a2, a3, a4, . . . in a finite group. An
infinite sequence of elements will necessarily have duplicates ai = aj , which
means that aj−i = e.

Definition 4.1 (Order). For a finite group G and some element a ∈ G, define
ord a to be the smallest integer n such that an = e.

Proposition 4.1. For a ∈ G finite, ord a | |G|.

Proof. Use Lagrange’s theorem on the cyclic subgroup generated by a.

Corollary 4.1.1. Any group with prime order is cyclic.

4.2 Quotient Groups

We start by reviewing cosets (from the last lecture). Cosets can be defined as
equivalence classes under the relation

a ∼ b⇐⇒ aH = bH.

Example 4.1. Consider G = R2, and H ∼= R is some line passing through the
origin. Then, the cosets of H in G are the set of lines parallel to H. If we treat
the set of cosets as a group itself, we can then “factor” G into the product of H
and G/H.

If we have a surjective homomorphism G
φ−→ K with kernel H, then the

fibers φ−1(a) : a ∈ K are left and right cosets of H. Then, in what cases for
H ⊂ G can we give G/H the structure of a group, such that the map

G→ G/H

a 7→ aH

is a homomorphism?

Proposition 4.2. The answer to our question is yes, i.e., we can give G/H a
group structure and homomorphism G→ G/H, if and only if H is normal.

Proof. For the necessary direction, suppose we have some homomorphism φ :
G→ K with kernel H. Then, notice that

φ(aha−1) = φ(a) · φ(h) · φ(a−1) = φ(a) · φ(a−1) = e.
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Thus, aHa−1 = H is fixed under conjugation by elements of G, so H is a normal
subgroup by definition.

To prove the other direction, given some normal subgroup H, we can define
the group law on G/H by

aH · bH = abH.

For this to be a valid homomorphism, we have to check

aH = a′H =⇒ abH = a′bH.

This is not true for general H, but assuming H is normal, we have

a′bH = a′b(b−1Hb) = a′Hb = aHb = abH.

Definition 4.2 (Quotient group). If G is any group and H ⊂ G is a normal
subgroup, then the quotient group, denoted G/H, is the set of all cosets aH
with law of composition

(aH)(bH) := abH.

There exists a surjective homomorphism G→ G/H given by a 7→ aH.

Corollary 4.2.1. There exists a bijection between subgroups of G/H, and sub-
groups of G that contain H.

Finally, we have a name for groups that cannot be factored in this way.

Definition 4.3 (Simple group). A group G is called simple if it has no normal
subgroups (other than G and {e}), and thus it cannot be factored into the
product of H and G/H.

Proposition 4.3. Sn is not simple for n > 2.

4.3 Exact Sequences

Definition 4.4 (Exact). Suppose we have a sequence of groups with homomor-
phisms between them:

· · · → Gi
φi−→ Gi+1

φi+1−−−→ Gi+2 → · · ·

We call this sequence of homomorphisms exact if ∀i,

im(φi−1) = ker(φi).

Definition 4.5 (Short exact). The simplest and most common case is that of
a short exact sequence,

{e} → A
φ−→ B

ψ−→ C → {e}.
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The exactness property in the case of a short exact sequence means that
A→ B is an inclusion, and B → C is surjective. We then have

A = imφ = kerψ =⇒ C = B/A.

Examples include:

{e} → Z/2Z→ Z/2Z× Z/2Z→ Z/2Z→ {e},

{e} → Z/2Z→ Z/4Z→ Z/2Z→ {e},
{e} → Z/2Z→ Z/6Z→ Z/3Z→ {e},
{e} → Z/3Z→ Z/6Z→ Z/2Z→ {e},
{e} → Z/3Z→ S3 → Z/2Z→ {e}.

However, there does not exist an exact sequence

{e} → Z/2Z→ S3 → Z/3Z→ {e}.

4.4 Cycle Notation for Permutations

We would like to think more about the symmetric group Sn, so we need some
notation to talk about it. Define a cycle ∈ Sn to be a sequence of k elements
such that

(a1, a2, . . . , ak−1, ak) 7→ (a2, a3, . . . , ak, a1).

Any permutation can be expressed as a composition of disjoint cycles. For
example, the permutation 12345 7→ 43251 can be written as (32)(451). Since this
is not unique, we arbitrarily prefer to write the first lexicographical arrangement,
e.g., (145)(23).

This notation also has the added benefit that a k-cycle can be written as a
product of k − 1 swaps, or 2-cycles. In particular,

(a1a2 . . . ak) = (a1a2)(a2a3)(a3a4) . . . (ak−1ak).

Proposition 4.4. If µ = σ1σ2 . . . σk = τ1τ2 . . . τ` where these are products of
transpositions (2-cycles), then k ≡ ` (mod 2).

Proof. Count the parity of the number of inversions i < j such that µi > µj .
Equivalently, consider the functions

f(x) =
∏

1≤i<j≤n

(xj − xi),

fσ(x) =
∏

1≤i<j≤n

(xσj − xσi).

Then, we define the sign of a permutation such that

fσ(x) = (sgnσ)f(x).
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5 September 13

We wrap up our discussion of groups today, in anticipation for moving on to
rings, fields, modules, and vector spaces next week!

Definition 5.1 (Alternating group). Consider the homomorphism Sn → Z/2Z,
given by σ 7→ sgnσ. The kernel of this homomorphism is the normal subgroup
of even permutations in Sn, denoted by An.

{e} → An → Sn → Z/2Z→ {e}.

Note. In S3, the unique subgroup of order 3 is A3. Since any automorphism
sends subgroups to other subgroups of equal size, A3 must be sent to itself by
any automorphism. Conjugation is just one special class of automorphism, so
A3 is invariant under conjugation and hence normal.

Definition 5.2 (Inner and outer automorphisms). There exists a homomor-
phism G → Aut(G) given by sending an element a to ca(g) = aga−1. The
image of this map is called the inner automorphisms of G. All other automor-
phisms are called outer automorphisms.

Definition 5.3 (Dihedral group). The dihedral group of order 2n, denoted by
Dn, is the group of symmetries of a regular n-gon.

How can we describe the structure of a dihedral group? Note that D5 ⊂
S5. The 10 elements of D5 are the five rotations (including identity) and five
reflections about some axis. Additionally, there are six nontrivial subgroups:
one of order 5 consisting of the rotations, and five of order 2 each having a
single reflection.

5.1 Three Constructions

Definition 5.4 (Center of a group). If G is any group, then its center, denoted
Z(G) is the set of elements that commute with all elements in G. Equivalently,

Z(G) = {a ∈ G | ∀g ∈ G : ag = ga}.

Proposition 5.1. The center Z(G) of any group is a normal, abelian subgroup
of G, and also, it is the kernel of the map G→ Aut(G) given by conjugation.

Example 5.1. The center of Dk for even k is {e, r}, where r is an 180◦ rotation.
Also, the quotient Dk/Z(Dk) is isomorphic to Dk/2.

Definition 5.5 (Commutator). The commutator of a and b is

[a, b] := aba−1b−1.

The subgroup of G generated by commutators is denoted C(G), and it is a
normal subgroup. The quotient G/C(G) is called the abelianization of G.
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Definition 5.6 (Free group). We define the free group on 2 generators to be
the set of all words on a, b. In other words, it is the set of all finite strings of
symbols of the form ak, b` with k, ` ∈ Z \ {0} with no two ak or b` adjacent. If
our group operation is concatenation, then this is denoted F2.

Definition 5.7 (Free product). The free product of two groups G and H, de-
noted by G∗H, is the set of finite strings of the form g1h1g2h2 . . . or h1g1h2g2 . . .
consisting of alternating elements from G and H. This is similar to the Cartesian
product, except we do not assume elements of G and H commute.

Example 5.2. Although Z× Z = Z2, the free product Z ∗ Z = F2.

Example 5.3. There exists an obvious inclusion F2 → F3, but weirdly, there
also exists an inclusion F3 → F2. However, these two groups are not isomor-
phic; the Schröder-Bernstein theorem fails spectacularly for groups.
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6 September 16

Today we begin our discussion of linear algebra with fields and vector spaces,
plus rings and modules.

6.1 Fields and Rings

Definition 6.1 (Field). A field is a set S with two laws of composition, denoted
+ and ×, satisfying the following properties:

• (S,+) is an abelian group with identity 0 ∈ S.

• (S \ {0},×) is also an abelian group with identity 1 ∈ S.

• Multiplication is distributive over addition, i.e., a× (b+ c) = a× b+a× c.

• 0 6= 1 (the field has more than 1 element).

Definition 6.2 (Ring). If we take the same definition but only require that
(S \ {0},×) be a monoid (no inverses), this is called a commutative ring.

Proposition 6.1. The following results follow from the field axioms:

• 0× a = 0.

• If a 6= 0, ab = ac =⇒ b = c.

Definition 6.3 (Ring homomorphism). A homomorphism of rings A→ B is a
map that respects the two laws of composition

ϕ(a+ b) = ϕ(a) + ϕ(b),

ϕ(ab) = ϕ(a)ϕ(b).

We also need the map to preserve multiplicative identity:

ϕ(1) = 1.

Example 6.1. The standard example of a ring is Z, and standard examples of
fields are Q ⊂ R ⊂ C.

Example 6.2. The set of integers modulo n, Z/nZ, is a ring for n ≥ 2. Fur-
thermore, when p is prime, then Z/pZ is a finite field Fp due to the existence
of multiplicative inverses modulo p.

Definition 6.4 (Polynomial ring). Given a field k, we can form the ring k[x]
of polynomials over k by taking linear combinations of powers of x:

k[x] = {a0 + a1x+ . . .+ anx
n : n ∈ N, ai ∈ k}.

We can also form polynomial ring over multiple variables, k[x1, x2, . . . , x`] by
taking linear combinations of products of powers of variables.
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Definition 6.5 (Field of rational functions). Given a field k, we can form a field
of rational functions over k, denoted k(x), by taking all quotients of polynomials
in x modulo the obvious equivalence relation of fraction equality:

k(x) = {p(x)/q(x) : p, q ∈ k[x], q 6= 0},

p/q ∼ p′/q′ ⇐⇒ qp′ = q′p.

Definition 6.6 (Power series). Given a field k, we can form the ring of power
series over k by taking infinite expressions

k[[x]] = {a0 + a1x+ a2x+ · · · : ai ∈ k}.

We can take formal products of power series by distributing from lower expo-
nents up, i.e.,

(a0 + a1x+ a2x
2 + · · · )(b0 + b1x+ b2x

2 + · · · )

= a0b0 + (a0b1 + a1b0)x+ (a2b0 + a1b1 + a0b2)x2 + · · · .

Observe that if a0 6= 0, then (a0 + a1x+ · · · ) has a multiplicative inverse.

Definition 6.7 (Laurent series). The ring of power series has a corresponding
field of Laurent series over k, which are formal power series that start at some
smallest negative exponent:

k((x)) = {a−nx−n + a−n+1x
−n+1 + · · · }.

Definition 6.8 (Extension field). A generated field k(x1, x2, . . . , xn) is the field
created by adjoining the elements {xi} as generators to k, with certain algebraic
properties. Some examples are

Q(
√

2) = {a+ b
√

2 : a, b,∈ Q},

R(i) = {a+ bi : a, b ∈ R} = C.

6.2 Vector Spaces

Definition 6.9 (Module). Given a ring R, an R-module is a set V with two
laws of composition

• (vector addition) + : V × V → V , such that (V,+) is a group.

• (scalar multiplication) · : R×V → V , that distributes over vector addition,
and is also compatible (associative) with multiplication in R:

– λ(a+ b) = λa+ λb.

– (λ+ µ)a = λa+ µa.

– a(bv) = (ab)v.

– 1v = v.
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Definition 6.10 (Vector space). A vector space over k is a k-module, where k
is a field, and thus has scalar inverses.

For the rest of this discussion, fix a field k.

Definition 6.11 (Subspace). A subspace W ⊂ V is a subset closed under vector
addition and scalar multiplication.

Example 6.3 (Tuples). The vector space kn is given by all n-tuples of elements
in k:

kn = {(α1, . . . , αn) : αi ∈ k}.

Example 6.4 (Polynomials). The polynomial ring k[x] is a vector space over
k, and it is a subspace of the power series k[[x]].

Example 6.5 (Functions). We can generalize the idea of tuples to functions
from a set S to k, denoted kS , which is a vector space over k. These vector
spaces can be very large (Hilbert spaces); some examples include

C∞R ⊂ CR ⊂ RR.

Definition 6.12 (Linear combination). A linear combination of v1, . . . , vn ∈ V
is, for any λ1, . . . , λn ∈ k, an expression of the form

v = λ1v1 + · · ·+ λnvn.

Definition 6.13 (Spanning set). We say that {v1, v2 . . .} ⊂ V is a spanning set
of V if every vector v ∈ V can be expressed as a finite linear combination of the
vectors.

Definition 6.14 (Independence). We say that {v1, v2, . . .} ⊂ V is linearly in-
dependent if no nontrivial finite linear combination of the vectors is zero.

Definition 6.15 (Basis). A basis of V is a set of vectors {v1, v2, . . .} ⊂ V that
is both spanning and independent. Equivalently, every vector v ∈ V can be
expressed uniquely as a finite linear combination

v = c1v1 + c2v2 + · · ·+ cnvn.

Note. Given any v1, . . . , vn ∈ V , we can define a map

ϕv : kn → V,

(λ1, λ2, . . . , λn) 7→
n∑
i=1

λivi.

This set is spanning when ϕv is surjective, and independent when ϕv is injective.
Thus, {vi} form a basis if and only if ϕv is isomorphism.
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7 September 18

Today we will prove key facts about vector spaces, including the definition of
dimension. We’ll also show a couple examples of bases in finite and infinite
dimensions.

7.1 More on Fields

Definition 7.1 (Characteristic). Given a ring R, we can define a homomor-
phism of rings ϕ : Z→ R by

0 7→ 0, 1 7→ 1, 2 7→ 1 + 1, n 7→ 1 + 1 + · · ·+ 1.

The kernel of this homomorphism is either 0 or nZ for some n. If ϕ is surjec-
tive, then we say R has characteristic zero, and otherwise, it has characteristic
n, the smallest positive integer such that ϕ(n) = 0. When R is an integral
domain, its characteristic must be either zero or a prime p.

Definition 7.2 (Linear transformation). A vector space homomorphism, or
linear transformation ϕ : V → W , is a map of sets that respects the vector
space structure on V and W .

ϕ(a+ b) = ϕ(a) + ϕ(b),

ϕ(λa) = λϕ(a).

Note. The set of all homomorphisms Hom(V,W ) itself can be given the struc-
ture of a k-vector space by adding functions ϕ+ ψ = v 7→ ϕ(v) + ψ(v).

Definition 7.3 (Linear subspace). A subspace W ⊂ V is a subset closed under
vector addition and scalar multiplication.

Definition 7.4 (Kernel and image). If ϕ : V →W is any linear map, then the
kernel kerϕ = {v ∈ V : ϕ(v) = 0} is a subspace, and so is the image imϕ.

Note. If k is a field and k′ ⊂ k is a subfield, then k is a vector space over k′.

7.2 Basis and Dimension

Recall the definition of a basis from before.

Example 7.1. The field kn = {(a1, . . . , an) : ai ∈ k} has basis

{ei = (0, . . . , 0, 1, 0, . . . , 0) : i = 1, . . . , n}.

Other bases exist, for example, in k2 where k has characteristic not equal to 2,
{(1, 1), (1,−1)} is a basis.
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Example 7.2 (Infinite dimensions). Define the set kS0 to be all the functions
f : S → k such that f(s) = 0 for all but finitely many s ∈ S. Then, given
ϕv = kS0 → V by

ϕv(f) =
∑
α∈S

f(α)vα,

• {vα}α∈S is a spanning set if ϕv is surjective.

• {vα}α∈S is independent if ϕv is injective.

• {vα}α∈S is a basis if ϕv is an isomorphism.

Proposition 7.1. If v1, . . . , vn span V , then some subset of {v1, . . . , vn} is a
basis.

Proof. Assume that the set is not linearly independent. Then, we can throw
away one element of the set by writing it as a linear combination of the other
elements, so we have a smaller spanning set, and we proceed by induction.

Lemma 7.2. If S is a basis for V , then any proper subset of S is independent
but does not span, and any proper superset spans but is not independent.

Proof. Simply add or remove a vector. This result holds even when S has an
infinite basis.

Proposition 7.3. If {v1, . . . , vm} and {w1, . . . , wn} are two bases for V , then
n = m.

Proof. Note that 〈v2, . . . , vm〉 fails to span V . Then there exists j such that
wj /∈ 〈v2, v3, . . . , vm〉. We claim that {wj , v2, . . . , vm} is again a basis.

Once we show this claim, then we can repeatedly swap out elements of the
form vi for wj , completing the proof.

Definition 7.5 (Dimension). The dimension of a vector space V is the cardi-
nality of any basis of V .
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8 September 20

Today, we introduce the venerable linear transformation (a homomorphism of
vector spaces), which is the key object of study in linear algebra.

8.1 Linear Transformations

Let V be a finite-dimensional vector space with basis v1, . . . , vn ∈ V . Then,
there exists an isomorphism kn → V , given by

(c1, . . . , cn) 7→
n∑
i=1

civi.

Now, consider two vector spaces V and W , and assume that ϕ : V → W is a
linear map. Then, considering a basis v1, . . . , vm of V and w1, . . . , wn of W , we
have for some aij ∈ k,

ϕ(v1) = a11w1 + a21w2 + · · ·+ an1wn,

ϕ(v2) = a12w1 + a22w2 + · · ·+ an2wn,

ϕ(v3) = a13w1 + a23w2 + · · ·+ an3wn,

...

ϕ(vm) = a1mw1 + a2mw2 + · · ·+ anmwn.

The coefficients aij totally specify the linear map ϕ, and furthermore, there ex-
ists a ϕ for each such set of coefficients. This motivates the following definition.

Definition 8.1 (Matrix). An n ×m matrix over k is a set of nm coefficients
aij for 1 ≤ i ≤ n and 1 ≤ j ≤ m. We denote it by

A =


a11 a12 a13 · · · a1m

a21 a22 a23 · · · a1m

a31 a32 a33 · · · a1m

...
...

...
. . .

...
an1 an2 an3 · · · anm

 .
Proposition 8.1. Given two vector spaces V , W of dimension m and n, there
exists an vector space isomorphism between Hom(V,W ) and the set of n × m
matrices, for each selection of bases in V and W .

We call A = (aij) the matrix representative of ϕ in terms of the bases
v1, . . . , vm and w1, . . . , wn, to make it clear that A depends on the specific
choice of basis.

Definition 8.2 (Change of basis). Suppose we have an old basis v1, . . . , vm for
V , and a new basis v′1, . . . , v

′
m. We can express each vector in the new basis as

a linear combination of vectors in the new basis, with some coefficients

v′i = v1iv1 + · · ·+ vmivm.

26



Then, we call B = (bij) the change-of-basis matrix. Multiplying a vector in the
new basis by B gives the equivalent vector in the old basis.

Proposition 8.2. If we have a linear map V → W with matrix representative
A, and we select two new bases for V and W with change-of-basis matrices B
and C, then the new matrix representative is

A′ = C−1AB.

8.2 Constructions on Vector Spaces

We consider how to combine and decompose abstract vector spaces.

Definition 8.3 (Direct sum). The direct sum, or Cartesian product of two
vector spaces V and W is given by ordered pairs of vectors where operations
act on each independently, i.e.,

V ⊕W = V ×W = {(v, w) | v ∈ V,w ∈W},

(v, w) + (v′, w′) = (v + v′, w + w′),

λ(v, w) = (λv, λw).

Given vector spaces of dimensions n and m, the direct sum has dimension n+m.
These same definitions apply for a collection of vector spaces V1, . . . , Vn.

Note. For an infinite sequence of vector spaces V1, V2, V3, . . ., the Cartesian
product is defined as the set of tuples (v1, v2, . . .), but the direct sum requires
vi = 0 for all but finitely many i.

Definition 8.4 (Span and independence of subspaces). Let W be any vec-
tor space, and let W1,W2, . . . ,Wn ⊂ W be linear subspaces. We say that
W1, . . . ,Wn span if every vector w ∈W is expressible as a sum

w = w1 + w2 + · · ·+ wn : wi ∈Wi.

Similarly, we say that W1,W2, . . . ,Wn are independent if w1 +w2 + · · ·+wn = 0
implies that w1 = w2 = · · · = wn = 0.

Definition 8.5 (Direct sum decomposition). For some collection of subspaces
W1, . . . ,Wn ⊂ W , if these are both spanning and independent, then we say
{Wi} gives a direct sum decomposition of W . Equivalently, the disjoint union
of the bases for each Wi is a basis for W , and dimW =

∑n
i=1 dimWi.

8.3 Facts about Linear Maps

We prove an analogue of the First Isomorphism Theorem for vector spaces.

Proposition 8.3 (Rank-nullity theorem). Given a linear map ϕ : V → W be-
tween finite dimensional vector spaces, we define the kernel and image subspaces
as in Definition 7.4. Then, we have

dim ker(ϕ) + dim im(ϕ) = dimV.
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Proof. We start by picking a basis u1, . . . , um for ker(ϕ), and we complete this
to form a basis for V : u1, . . . , um, v1, . . . , vn−m. Then, we wish to prove that
ϕ(v1), ϕ(v2), . . . , ϕ(vn−m) is a basis for im(ϕ). This is clear because if we express
an arbitrary vector v ∈ V in terms of the basis, we have

v =

m∑
i=1

aiui +

n−m∑
i=1

bivi.

Then,

ϕ(v) =

���
���

ϕ

(
m∑
i=1

aiui

)
+ ϕ

(
n−m∑
i=1

bivi

)
= b1ϕ(v1) + · · ·+ bn−mϕ(vn−m).

Thus, {ϕ(vi)} is spanning, and similar argument shows also that it is indepen-
dent (as otherwise it would belong in the kernel), so it is a basis.

Note. Let r = dim im(ϕ) be the rank of the map. If we complete the basis of
W and write the matrix representative of ϕ, this is in block form:[

Ir 0r,n−r
0w−r,r 0w−r,n−r

]
.

There really aren’t that many different linear maps between vector spaces!

Consider linear operators, which are maps from a vector space to itself. What
are the different operators under change of basis? Equivalently, what are the
conjugacy classes of matrices where A ∼ B−1AB?
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9 September 23

Today we talk about more constructions in the land of abstract linear algebra.
This will hopefully be the last definition-heavy lecture.

9.1 Linear Constructions

Definition 9.1 (Quotient space). Let V be a vector space over k, and let U ⊂ V
be a subspace. Since V and U are abelian groups, we can define the quotient
space by the set of all cosets

V/U = {v + U | v ∈ V }.

We also give the quotient space scalar multiplication defined by

λ · (v + U) = λv + U.

Example 9.1 (Short exact sequence). Any quotient space gives us have a nat-
ural map V → V/U = W that is surjective with kernel U . Furthermore, this
gives us a short exact sequence

0→ U → V →W → 0.

Note that while V is isomorphic to U ⊕ W since they have the same finite
dimension, there is no natural isomorphism between them.

Example 9.2 (Correspondence theorem). If we have an arbitrary linear map
ϕ : V → Y , where Y is any vector space, then we can factor the map into

V → V/ ker(V )
ϕ−→ Y.

In particular, there exists a bijection between subspaces of V/U and subspaces
of V that contain U .

Definition 9.2 (Dual space). Given any vector space V over k, define the dual
vector space V ∗ = Hom(V, k). In other words, this is the vector space of all
linear functionals over V .

Example 9.3 (Dual space given a basis). Given V = kn, there exists a basis
e1, . . . , en for kn. Then, any linear map ` : kn → k is determined by its values
`(ei) on each basis vector, so it is effectively represented by a row vector. We
then have an isomorphism V ∗ ∼= kn given by

` 7→ (`(e1), . . . , `(en)).

Definition 9.3 (Dual basis). If we have a basis for V given by v1, . . . , vn, then
we can define the dual basis as a corresponding basis for V ∗ given by v∗1 , . . . , v

∗
n,

defined as

v∗i : vi 7→ 1,

vj 7→ 0 (j 6= i).
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Note. There are many possible bases for the dual space and no single canonical
one, so there does not exist a natural isomorphism from V to V ∗.

Example 9.4 (Dual of the dual). There exists a natural isomorphism from a
finite-dimensional vector space V to the dual of its dual, (V ∗)∗, given by

v 7→ ` 7→ `(v).

Example 9.5 (Infinite dimensions break things). If V is infinite-dimensional,
there does not always exist an isomorphism from V to V ∗. In particular, if we
take V = k[x], then V ∗ ∼= k[[x]].

Definition 9.4 (Transpose map). If we have an arbitrary linear map ϕ : V →
W , then we can define the transpose map tϕ : W ∗ → V ∗ given by

tϕ : ` 7→ ` ◦ ϕ.

Example 9.6. For finite-dimensional V , W , we have that t(tϕ) = φ : V →W .

Example 9.7. If ϕ is injective then tϕ is surjective. The converse is also true.

Definition 9.5 (Annihilator). If V is a vector space and U ⊂ V is any subspace,
then the annihilator of U is a subspace of V ∗ given by

Ann(U) = {` : V → k | `(U) ≡ 0} = (V/U)∗.

9.2 Linear Operators

Last week we saw that linear maps from V to W aren’t very interesting, since
they are all effectively identity under an appropriate choice of basis. Now we
discuss linear maps from V → V , which gives us less freedom.

Definition 9.6 (Linear operator). Given a vector space V , an operator on V
is any linear map ϕ : V → V .

Definition 9.7 (Endomorphism). The space of all linear maps ϕ : V → V can
be denoted Hom(V, V ) or End(V ), the space of endomorphisms on V . While
in general Hom(V,W ) has the structure of a group, End(V ) is also a non-
commutative ring, with multiplication given by composition of maps.

A natural question to ask is about whether there exist subspaces that remain
the same under a linear map.

Definition 9.8 (Invariant subspace). Given a subspace U ⊂ V , we say that U
is invariant under a linear operator ϕ when ϕ(U) = U .

Definition 9.9 (Eigenvector). When we have a one-dimensional invariant sub-
space U given by k · v, there is not much freedom to choose a map. We must
have that ϕv = λv for some λ ∈ k. In this case, v is called an eigenvector for
ϕ, and λ is called the corresponding eigenvalue.
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Example 9.8 (Basis of eigenvectors). If we have a map ϕ : R2 → R2 with two
eigenvectors v1 and v2 with eigenvalues λ and µ, then we can choose a basis for
R2 given by v1 and v2, after which ϕ simply becomes the diagonal map[

λ 0
0 µ

]
.

However, we cannot always find a basis of eigenvectors, for example in the case[
1 1
0 1

]
,

which is a shear transformation.

Proposition 9.1 (Structural decomposition). Eigenvectors with distinct eigen-
values are linearly independent.

Proof. Suppose that v1, . . . , v` are eigenvectors for ϕ : V → V with distinct
eigenvalues λ1, . . . , λ`. Furthermore, assume for the sake of contradiction that
v1, . . . , v` are linearly dependent, as well as a minimal such set. This means
that we can write for some nonzero ai,

a1v1 + a2v2 + · · ·+ a`v` = 0.

Applying ϕ to both sides of this equation yields

a1λ1v1 + a2λ2v2 + · · ·+ a`λ`v` = 0.

We now have two linear equations in the {vi}. If we multiply the first equation
by λ` and subtract, this yields

(λ1 − λ`)a1v1 + (λ2 − λ`)a2v2 + · · ·+ (λ`−1 − λ`)a`−1v`−1 = 0.

However, this is a smaller linear combination of v1, v2, . . . , v`−1 that also van-
ishes, which contradicts the assumption that the {vi} are minimal.
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10 September 25

Today we continue our discussion on linear operators.

10.1 Linear Operators (cont.)

Recall that a linear operator ϕ : V → V is an endomorphism on a vector space,
and these form a ring under composition and addition.

Definition 10.1 (Invertible). We say that ϕ ∈ End(V ) is invertible or nonsin-
gular if any one of the following equivalent conditions hold:

• ϕ is injective.

• ϕ is surjective.

• ϕ is an isomorphism.

• rankϕ = dimV .

Our goal is to express an operator in terms of simpler component operators
on subspaces. We wish to find V = A⊕B such that A and B are both invariant
subspaces under ϕ: ϕ(A) ⊂ A and ϕ(B) ⊂ B. This is equivalent to finding a
basis v1, . . . , vn for V such that the matrix representative of ϕ is block diagonal.

Example 10.1 (Diagonalizable matrix). If we have n = dimV one-dimensional
invariant subspaces A1, . . . , An ⊂ V , then there exists a basis v1, . . . , vn for V
such that the matrix representative for ϕ is diagonal. We call ϕ diagonalizable.

Example 10.2 (Block upper-triangular). If we have an invariant subspace A ⊂
V under ϕ, then we can choose a basis v1, . . . , vk for A and complete to a basis
for V : v1, . . . , vn. Then, the matrix representative of ϕ with respect to this
basis is the block upper-triangular matrix[

ϕ ∗
0 ∗

]
.

10.2 Interlude on Polynomials

Suppose we have polynomials over a field k of the form

k[x] = {anxn + · · ·+ a0 | ai ∈ k, n ∈ N}.

Proposition 10.1 (Lagrange’s theorem). Given some polynomial f over a ring
R that satisfies f(a) = 0 for some a ∈ R, then (x − a) | f . In other words,
f(x) = (x− a)g(x). As a corollary, if R is an integral domain and f has degree
n, then there are at most n roots ai such that f(ai) = 0.

Proof. Use polynomial long division. We have f(x) = (x−a)g(x) + r, and since
a is a root, this means that r = 0.
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Definition 10.2 (Algebraically closed). A field k is called algebraically closed
if every non-constant polynomial has a root. Equivalently, combining this with
the last proposition, every non-constant polynomial factors into a product

f(x) = c(x− λ1)(x− λ2) · · · (x− λk).

Proposition 10.2 (Fundamental Thm. of Algebra). The field of complex num-
bers C is algebraically closed.

Proof. Requires topology or complex analysis, left for Math 55b.

Definition 10.3 (Algebraic closure). Given a field k, we can construct k ⊃ k
such that k is algebraically closed.

10.3 Eigenvectors

We use algebraic closure to prove some important results.

Proposition 10.3 (Existence of eigenvectors). Given a finite-dimensional vec-
tor space V over an algebraically-closed field C and some linear operator ϕ :
V → V , then ϕ has a an eigenvector.

Proof. Say dimV = n. Then, choose any nonzero v ∈ V , and consider the n+ 1
vectors

v, ϕv, ϕ2v, . . . , ϕnv ∈ V.
Since we have n + 1 vectors, they are linearly dependent, so there exists some
coefficients a0, . . . , an ∈ C, not all zero, such that

a0v + a1ϕv + . . .+ anϕ
nv = 0,

This means that we can construct a linear operator

T = a0 + a1ϕ+ · · ·+ anϕ
n,

which has nonzero kernel. By the fundamental theorem of algebra, we can factor
this polynomial into an expression of the form

T = c(ϕ− λ1)(ϕ− λ2) · · · (ϕ− λn).

Since kerT 6= 0, we must have that at least one of the operators ϕ − λi is
singular, so there exists v such that (ϕ− λi)(v) = 0 for some i. In other words,

ϕ(v) = λiv.

Example 10.3. Consider the rotation map (x, y) 7→ (−y, x). This has no
eigenvectors in R2, as visibly demonstrated by the rotation. However, in C2,
this map has two eigenvectors

v1 = e1 + ie2 7→ e2 − ie1 = −iv1,

v2 = e1 − ie2 7→ e2 + ie1 = iv2.

Therefore, the 90◦ rotation map is really a diagonal operator over C2.
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Proposition 10.4 (Weak normal form). Given a finite-dimensional vector
space V over an algebraically-closed field C, as well as a linear operator ϕ :
V → V , there exists a basis v1, . . . , vn ∈ V for V such that the matrix represen-
tative of ϕ is upper triangular.

Proof. We claim that there exists a flag of subspaces

0 ⊂ V1 $ V2 $ · · · $ Vn = V,

such that ϕ(Vi) ⊂ Vi for all i. First, choose v1 6= 0 to be any eigenvector for ϕ,
and let V1 = 〈v1〉. Consider the induced map ϕ : V/V1 → V/V1 given by

ϕ(v + V1) = ϕ(v) + V1.

Now, ϕ has an eigenvector w ∈ V/V1, so we choose any v2 ∈ w+V1, which gives

ϕ(v2) ∈ 〈v1, v2〉.

Thus, define V2 = 〈v1, v2〉, and continue analogously for V3, . . . , Vn.

Proposition 10.5 (Singularity of upper triangular matrices). Suppose we have
some basis v1, . . . , vn for V and linear operator ϕ : V → V . If the matrix repre-
sentative A for ϕ with respect to {vi} is upper triangular, then ϕ is nonsingular
if and only if all diagonal entries in A are nonzero.

Proof. Suppose that we have some aii = 0. Then, we have

ϕ : 〈v1, . . . , vi〉 → 〈v1, . . . , v−1〉.

This cannot be injective as the image has smaller dimension than the domain,
so ϕ has nonzero kernel.

Conversely, if we have singular ϕ, then we can take some vector v ∈ kerϕ
such that ϕ(v) = 0. This means that there exists some i such that the vectors
{v1, . . . , vi−1, v} are independent, but {v1, . . . , vi, v} are dependent. Then,

vi ∈ 〈v1, . . . , vi−1, v〉,

ϕ(vi) ∈ 〈v1, . . . , vi−1〉+ 〈ϕ(v)〉 = 〈v1, . . . , vi−1〉.

This implies that aii = 0.
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11 September 27

Today we talk more about linear operators, and we also briefly discuss categories
and functors. We are currently in Chapter 8 of Axler (skipped Chapter 6, 7).

11.1 More on Eigenvectors

Recall that we can choose a basis for any linear operator ϕ such that the matrix
representative is upper triangular. From Proposition 10.5, we note that ϕ − λ
is singular if and only if λ = aii for some i.

Corollary 11.0.1. The eigenvalues of ϕ are exactly the diagonal entries in its
upper triangular matrix representative. In particular,

λ is an eigenvalue⇐⇒ ϕ− λ singular⇐⇒ λ = aii.

This means that the number of distinct eigenvalues is at most n.

Although this corollary is nice, it doesn’t tell us anything about the multi-
plicity of repeated eigenvalues. We would like to have more information about
this, but our upper triangular representation is not strong enough (and also not
unique). This motivates the following definitions.

Definition 11.1 (Generalized kernel). If ϕ : V → V is a linear operator, then
the kernel of ϕ is the set of vectors v for which ϕ(v) = 0. The generalized kernel
is defined as

gker(ϕ) = {v ∈ V | ∃m > 0 : ϕmv = 0}.

Equivalently, we can also write gkerϕ = kerϕn, where n = dimV .

Definition 11.2 (Nilpotent). If ϕm = 0 for some m, or equivalently gker(ϕ) =
V , then we say that ϕ is nilpotent.

Example 11.1 (Nilpotent map). Consider the map ϕ : k2 → k2 given by

e1 → 0,

e2 → e1.

Then, ϕ2 = 0, so ϕ is nilpotent.

Definition 11.3 (Generalized eigenvector). We call v ∈ V a generalized eigen-
vector with eigenvalue λ if it is in the generalized kernel, v ∈ gker(ϕ − λ).
Equivalently, there exists some m > 0 such that

(ϕ− λ)mv = 0.

Definition 11.4 (Algebraic multiplicity). The multiplicity of an eigenvalue λ
is the dimension of its generalized eigenspace

Vλ = gker(ϕ− λ).
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We now make a series of key claims that will complete our canonicalization
of linear operators and describe their eigenvectors.

Proposition 11.1 (Generalized eigenspaces are invariant). For any eigenvalue
λ, we have ϕ(Vλ) ⊂ Vλ.

Proof. Assume that v is a member of Vλ. Then, we have that

(ϕ− λ)nv = 0 =⇒ ϕ(ϕ− λ)nv = 0.

However, we also know that ϕ commutes with itself and the identity, so

ϕ(ϕ− λ)nv = (ϕ− λ)nϕv = 0.

Thus, by definition we have ϕ(v) ∈ Vλ.

Proposition 11.2 (Generalized eigenspaces are independent). When consid-
ered as subspaces of V , the generalized eigenspaces Vλ are independent for all
λ. In particular, if vi ∈ Vλi for i = 1, . . . , `, then

v1 + · · ·+ v` = 0⇐⇒ ∀i : vi = 0.

Proof. Assume for the sake of argument that v1 6= 0. By symmetry, this argu-
ment will work for any vi. First, note that (ϕ − λ1)nv1 = 0, so let k be the
largest integer such that

w = (ϕ− λ1)kv1 6= 0.

Now, we have that w 6= 0, but applying the map ϕ − λ1 one more time causes
w to vanish, so ϕw = λ1w. This means that w is an eigenvector!

Now, to our linear combination of vectors in each generalized eigenspace, we
apply the operator

(ϕ− λ1)k(ϕ− λ2)n · · · (ϕ− λ`)n.

This causes all of the vi to vanish except for the first term v1, which yields

0 = (ϕ− λ1)k(ϕ− λ2)n · · · (ϕ− λ`)nv1

= (ϕ− λ2)n · · · (ϕ− λ`)n(ϕ− λ1)kv1

= (ϕ− λ2)n · · · (ϕ− λ`)nw.

However, since w is an eigenvector, we have (ϕ− λ)w = (λ1 − λ)w. Thus, this
expression is equivalent to

(λ1 − λ2)n · · · (λ1 − λ`)nw = 0.

Assuming that the λi are distinct, we have that w = 0, which is a contradiction.
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Proposition 11.3 (Generalized eigenspaces are spanning). The generalized
eigenspace Vλ has dimension equal to the number of times λ appears on the
diagonal of an upper triangular matrix representative.

Proof. Left as an exercise, see Proposition 12.1.

In conclusion, using these past three propositions, we can have the following
decomposition for any linear operator ϕ.

Proposition 11.4. For any linear operator ϕ : V → V , we can decompose V
into the direct sum of generalized eigenspaces

V =
⊕
λ

Vλ,

where λ ranges over the eigenvalues of ϕ. This direct sum also has the property
that Vλ is invariant under ϕ.

Equivalently, in matrix terms, there exists a basis for V such that the matrix
representative of ϕ is block diagonal, and each block Vλi → Vλi is an upper
triangular matrix with diagonal entries all λi. We write this as

ϕ =



λ1 · · · ∗
...

. . .
...

0 · · · λ1

 · · · 0

...
. . .

...

0 · · ·

λ` · · · ∗
...

. . .
...

0 · · · λ`




.

11.2 Interlude on Category Theory

Definition 11.5 (Category). A category C consists of 3 things:

• a collection Ob(C) of objects,

• for each pair A,B ∈ Ob(C), a collection Mor(A,B) of morphisms,

• and a law of composition ◦, with signature ∀A,B,C ∈ Ob(C),

Mor(A,B)×Mor(B,C)→ Mor(A,C).

The law of composition must further satisfy the following two axioms:

• (Associativity) ∀A,B,C,D ∈ Ob(C) and morphisms α ∈ Mor(A,B), β ∈
Mor(B,C), γ ∈ Mor(C,D),

(γ ◦ β) ◦ α = γ ◦ (β ◦ α).
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• (Identity) ∀A ∈ Ob(C), ∃ idA ∈ Mor(A,A) such that

∀ϕ ∈ Mor(A,B) : ϕ ◦ idA = idB ◦ϕ = ϕ.

Example 11.2 (Category of sets). The category Set of sets is the category
with sets as objects, as functions as morphisms. In particular, Mor(A,B) is the
collection of all functions f : A→ B.

Example 11.3 (Category of groups). The category Grp of groups is the cat-
egory with all groups as objects, and homomorphisms of groups as morphisms.

Definition 11.6 (Product). Given two objects A,B ∈ Ob(C), the product A×B
is an object in Ob(C) with morphisms

π1 : A×B → A,

π2 : A×B → B,

such that for all T ∈ Ob(C) with morphisms T
α−→ A and T

β−→ B, there exists
a unique morphism ϕ : T → A×B such that the following diagram commutes.

T

A A×B B

α β
ϕ

π1 π2
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12 September 30

Today we finish our discussions of linear operators. During the next lecture, we
will catch up on categories and functors and introduce bilinear forms.

12.1 More on Eigenvectors (cont.)

Recall that given an operator ϕ over a finite-dimensional vector space V over
an algebraically closed field k, we can find a basis for V such that ϕ is a block-
diagonal matrix composed of upper-triangular maps on generalized eigenspaces.

Definition 12.1 (Similar). Given two linear operators, ϕ,ψ ∈ End(V ), we
say that they are similar or conjugate if there exists a change-of-basis operator
A ∈ GL(V ) such that

ϕ = AψA−1.

The nicest possible case is if all diagonal entries are distinct, in which there
must be a basis for V consisting of eigenvectors.

Definition 12.2 (Diagonalizable). We call a linear operator ϕ diagonalizable
or semisimple if there exists a basis for V consisting of eigenvectors of ϕ, or
equivalently, if ϕ has a diagonal matrix representative under some basis (it is
similar to a diagonal matrix).

In the case of repeated eigenvalues along the diagonal, we might not nec-
essarily have a complete basis of eigenvectors. However, what we do have is a
generalized eigenspace of the same dimension, as in the following proposition.

Proposition 12.1 (Repeated eigenvalues induce generalized eigenspaces). If an
upper triangular matrix representative of a linear operator ϕ has an eigenvalue
λ of multiplicity mλ on its diagonal, then

dim gker(φ− λ) = dim ker(φ− λI)n = mλ.

Proof. Induct on mλ. The idea is that either ϕ − λ has a kernel of dimension
mλ, or if it doesn’t, it maps onto its image, after which we can continue applying
ϕ−λ sufficiently many more times to get the rest of the generalized eigenvectors.
See Axler p. 252 for details.

Now, consider a single generalized eigenspace Vλ, and consider the matrix
block of ϕ in this subspace, which we denote Mλ. Note that ϕ|Vλ−λ is nilpotent
because Mλ has diagonal entries all λ. To finish our analysis, we wish to classify
the nilpotent operators within each block.

Proposition 12.2 (Nilpotent Jordan). Given any nilpotent operator, we can
write it as the direct sum of nilpotent Jordan blocks, each of the “descending
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ladder” form

J0,q =



0 1 0 0 · · · 0
0 0 1 0 · · · 0
0 0 0 1 · · · 0
...

...
...

. . .
. . .

...

0 0 0 0
. . . 1

0 0 0 0 · · · 0.


.

Proof. A nilpotent operator ϕ : V → V satisfies ϕn = 0, where n = dimV . Let
q be the smallest positive integer such that ϕq = 0, and take some v ∈ V such
that ϕq−1v 6= 0. Then, we can write a basis for an invariant subspace given by
the descending ladder

A = 〈v, ϕv, ϕ2v, . . . , ϕq−1v〉.

Finally, we claim that we can decompose V into the direct sum

V = A⊕B,

where B is also invariant under ϕ. Since ϕ|B is also a nilpotent map, we finish
by induction on the dimension of the subspace.

Corollary 12.2.1 (Number of nilpotent maps). The number of nilpotent opera-
tors on an n-dimensional vector space, up to conjugation, is equal to the number
of integer partitions of n.

Finally, we are ready to state the final conclusion, our “big result” about
matrix classification.

Proposition 12.3 (Jordan canonical form). Suppose we have any linear opera-
tor ϕ : V → V , where V is a finite-dimensional vector space over an algebraically
closed field. There exists a basis for V such that the matrix representative J of
ϕ is block diagonal,

J =


Jλ1,q1 0 · · · 0

0 Jλ2,q2 · · · 0
...

...
. . .

...
0 0 · · · Jλ`,q`

 ,
and each block Jλ,q is a q-dimensional Jordan block with eigenvalue λ:

Jλ,q =



λ 1 0 · · · 0 0
0 λ 1 · · · 0 0
0 0 λ · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · λ 1
0 0 0 · · · 0 λ.


.
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13 October 2

Today we begin talking about bilinear forms and inner product spaces. Our
long-term plan is to cover multilinear algebra and tensor algebra, then our
second unit on group theory, and finally, representation theory.

13.1 Bilinear Forms

Definition 13.1 (Dot product). Given a vector space Rn, we can define the
dot product to be the familiar map · : Rn × Rn → Rn given by

u · v =

n∑
i=1

uivi.

A useful question is: how can we generalize the dot product to abstract
vector spaces? It turns out that the most important property is bilinearity.

Definition 13.2 (Bilinear form). Given a vector space V over field k, a bilinear
form on V is a function

b : V × V → k,

which satisfies linearity properties in each factor:

• b(λx, y) = λ · b(x, y).

• b(u+ x, y) = b(u, y) + b(x, y).

• b(x, λy) = λ · b(x, y).

• b(x, u+ y) = b(x, u) + b(x, y).

Definition 13.3 (Vector space of bilinear forms). Given any vector space V
over k, the set

B(V ) = {b : V × V → k}

of all bilinear forms on V is itself a vector space, as it is closed under addition
and scalar multiplication.

Exercise 13.1. What is dimB(V )?

Definition 13.4 (Symmetric and skew-symmetric). Given a bilinear form b on
V , we call b:

• symmetric if b(u, v) = b(v, u), ∀u, v ∈ V .

• skew-symmetric if b(u, v) = −b(v, u), ∀u, v ∈ V .

Proposition 13.1. Every bilinear form over a vector space V over k (with field
characteristic not equal to 2) is uniquely expressible as a sum of a symmetric
and skew-symmetric bilinear form. In particular,

B(V ) = Bsymm(V )⊕Bskew(V ).
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Proof. Simply observe that

b1(u, v) =
b(u, v) + b(v, u)

2
,

b2(u, v) =
b(u, v)− b(v, u)

2
.

Proposition 13.2 (Bilinear forms are dual space homomorphisms). Given a
bilinear form b : V × V → k, we can generate a map ϕb : V → V ∗ given by

ϕb(v) = b(v, •).

The map taking b 7→ ϕb, from B(V )→ Hom(V, V ∗), is an isomorphism.

Proof. Injectivity in the forward direction is clear. To exhibit the inverse, sup-
pose that we have an arbitrary linear map ϕ : V → V ∗. Define the bilinear form
bϕ by

bϕ(v, w) = ϕ(v)w.

Thus, we have an injective inverse map ϕ 7→ bϕ, so B(V ) ∼= Hom(V, V ∗).

Definition 13.5 (Rank of bilinear forms). We call a bilinear form b non-
degenerate if its corresponding linear map, ϕb : V → V ∗, is an isomorphism.
More generally, define the rank of a bilinear form b to be the rank of ϕb, where
rank(b) ≤ dimV .

Note. Equivalently, for a finite-dimensional vector space V , a bilinear form is
degenerate if there exists a nonzero v ∈ V such that for all w ∈W , b(v, w) = 0.

Proposition 13.3 (Bilinear forms are matrices). Given a basis e1, . . . , en for
V and a bilinear form b : V × V → k, then b is determined by the values

aij = b(ei, ej).

In particular, this forms a matrix A = [aij ] such that b(v, w) = vTAw.

Proof. Let v =
∑
i viei and w =

∑
i wiei. Then, by bilinearity, we have that

b(v, w) =
∑
i

∑
j

b(viei, wjej)

=
∑
i

vi

∑
j

wjb(ei, ej)


=
∑
i

vi

∑
j

aijwj


=
∑
i

∑
j

vi(Aw)ij

= vTAw.
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Definition 13.6 (Orthogonal complement). Given a vector space V with non-
degenerate bilinear form b : V × V → k, let U ⊂ V be any subspace. Then, the
orthogonal complement of U with respect to b is the set

U⊥ = {v ∈ V | b(v, u) = 0,∀u ∈ U} = Ann(φb(U)).

Note. In general, we have dimU + dimU⊥ = dimV , but V 6= U ⊕ U⊥.

Definition 13.7 (Inner product). A bilinear form b is called an inner product
when it has the additional properties that:

• (Symmetry) b(u, v) = b(v, u).

• (Positive-definiteness) b(u, u) ≥ 0, with equality when u = 0.

Note. Any inner product is also non-degenerate.

13.2 Inner Product Spaces

A vector space V augmented with an inner product 〈•, •〉 is called an inner
product space, which provides us with an entirely new object of study.

Definition 13.8 (Length). Given any vector v ∈ V , the length of v, denoted
by |v|, is defined as

|v| =
√
b(v, v) =

√
〈v, v〉.

Proposition 13.4 (Pythagorean Theorem). Given two vectors u, v ∈ V such
that 〈u, v〉 = 0, we have that

|u+ v|2 = |u|2 + |v|2.

Proof. Note that

|u+ v|2 = 〈u+ v, u+ v〉
= 〈u, u〉+ 2〈u, v〉+ 〈v, v〉
= |u|2 + |v|2 + 2〈u, v〉.

The result follows immediately.

Proposition 13.5 (Cauchy–Schwarz). Given any two vectors u, v ∈ V ,

|〈u, v〉| ≤ |u| · |v|.

Proof. We can assume without loss of generality that |u| = 1. Then, we let
S = 〈u〉 (the one-dimensional vector space spanned by u), and also let S⊥ be
its orthogonal complement.

Now, we define a projection map P : V → S given by

v 7→ 〈u, v〉 · u.
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This map has kerP = S⊥ and imP = S. In particular, we have that for any
v ∈ V , there exists w ∈ S⊥ such that

v = P (v) + w.

Finally, we have that

|v|2 = |P (v)|2 + |w|2 ≥ |P (v)|2 = 〈u, v〉2.

Definition 13.9 (Angle between vectors). As a consequence of Prop. 13.5, we
define the angle α between two nonzero vectors u, v ∈ V by

cosα =
〈u, v〉
|u| · |v|

.

Definition 13.10 (Orthonormal basis). A basis v1, . . . , vn for an inner product
space V is called orthonormal if 〈vi, vj〉 = δij for all i and j. In other words, all
pairs of basis vectors are orthogonal, and each basis vector has length 1.

Equivalently, the map V
∼−→ Rn given by the basis {v1, . . . , vn} respects the

inner product (length-preserving).

Proposition 13.6 (Gram-Schmidt). A finite-dimensional inner product space
V has an orthonormal basis.

Proof. We proceed by induction on n = dimV . Start with any nonzero u ∈ V ,
and replace u by

u1 =
u

|u|
.

Then, let V ′ = 〈u1〉⊥, and apply the inductive hypothesis to generate a basis
u2, . . . , un for V ′. Finally, u1, u2, . . . , un is a basis for V .
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14 October 7

Today we review bilinear forms and inner product spaces, and we discuss oper-
ators on inner product spaces.

14.1 More on Bilinear Forms

Proposition 14.1. Suppose that b is a non-degenerate bilinear form over a
finite-dimensional vector space V . Then, the following statements are true (and
equivalent to non-degeneracy):

1. (ϕb injective) Given v ∈ V , if ∀w ∈ V : b(v, w) = 0, then v = 0.

2. (ϕb surjective) For all ` ∈ V ∗, there exists w ∈ V such that `(v) = b(w, v).

Last week we talked about the orthogonal complement of a subspace with a
bilinear form, and we noted that V 6= U ⊕U⊥ in general. The counterexamples
are precisely when U ∩ U⊥ is nontrivial, as in the following definition.

Definition 14.1 (Isotropic). A symmetric bilinear form b is called isotropic
when there exists a nonzero vector u such that b(u, u) = 0. Equivalently, if we
let U = 〈u〉, then u ∈ U⊥.

Note in particular that inner products are anisotropic because they are
positive-definite, so for any inner product space V and subspace U ⊂ V , we
have the decomposition V = U ⊕ U⊥.

14.2 Operators on Inner Product Spaces

Definition 14.2 (Orthogonal transformation). Consider a finite-dimensional
inner product space V . An operator T : V → V is called orthogonal if it
preserves the length of vectors, i.e., for all v, w ∈ V , 〈Tv, Tw〉 = 〈v, w〉.

Definition 14.3 (Orthogonal group). The set of orthogonal transformations
over V is closed under composition and thus forms a subgroup O(V, b) ⊂ GL(V ).
Since we are only working over reals, we can define the orthogonal group of
dimension n, denoted O(n), to be the length-preserving transformations of Rn.

Definition 14.4 (Adjoint map). Suppose that T : V → V is an operator on
an inner product space V . Then, recall that the transpose tT is a natural map
V ∗ → V ∗. If we take the natural isomorphism V = V ∗ given by the inner
product then, this gives us a map from T ∗ : V → V as follows.

V ∗ V ∗

V V

tT

T∗

Then, T ∗ is called the adjoint of T , and it is defined by the condition

〈v, Tw〉 = 〈T ∗v, w〉.
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Definition 14.5 (Self-adjoint). We call a linear operator T : V → V self-adjoint
if T = T ∗. In other words,

〈v, Tw〉 = 〈Tv,w〉.

Equivalently, T is self-adjoint when the matrix representative of T with respect
to an orthonormal basis is symmetric. Note that self-adjoint operators are closed
under addition, but not composition, so they form a subspace of End(V ).

Note. In contrast, observe that for any orthogonal map T , we have

〈Tv,w〉 = 〈v, T−1w〉 = 〈v, T ∗w〉,

so an orthogonal map is one that satisfies T−1 = T ∗. As a consequence, the
matrix representative of an orthogonal map with respect to an orthonormal
basis has columns that also form an orthonormal basis in Rn.

With these definitions noted, we will now make some observations that lead
up to the spectral theorem.

Proposition 14.2. Given a self-adjoint operator T : V → V , suppose that
W ⊂ V is an invariant subspace, such that T (W ) ⊂ W . Then, the orthogonal
complement W⊥ is also invariant, i.e., T (W⊥) ⊂W⊥.

Proof. If v ∈W⊥, then for all w ∈W ,

〈v, w〉 = 0 =⇒ 〈v, Tw〉 = 〈Tv,w〉 = 0.

Thus, Tv ∈W⊥.

Corollary 14.2.1. If T is self-adjoint, then T 2 is a positive operator, meaning
that for all v ∈ V , we have 〈T 2v, v〉 ≥ 0.

Proof. Note that 〈T 2v, v〉 = 〈Tv, Tv〉 = |Tv|2 ≥ 0. Equivalently, the matrix
representative of T 2 is positive semidefinite.

Corollary 14.2.2. If a > 0 and T is self-adjoint, then T 2 + a is invertible.
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15 October 9

Today we continue discussing operators on inner product spaces. On Friday, we
will continue with Hermitian inner products, as well as rings and modules.

15.1 The Spectral Theorem

Continuing from the corollaries at the end of the last lecture, we prove another
useful fact before moving to the spectral theorem.

Corollary 15.0.1. If p(x) = x2 +ax+b is a real polynomial such that p(x) > 0
for all x ∈ R (i.e., b > a2/4), then p(T ) is invertible.

Proof. Note that for any v 6= 0,

〈(T 2 + aT + b)(v), v〉 = 〈T 2v, v〉+ a〈Tv, v〉+ b〈v, v〉
≥ |Tv|2 − a|Tv| · |v|+ b|v|2 (Cauchy-Schwarz)

= |v|2
[(
|Tv|
|v|

)2

− a |Tv|
|v|

+ b

]
> 0.

Proposition 15.1 (Spectral theorem). Any self-adjoint operator has an or-
thonormal basis of eigenvectors, with all real eigenvalues.

Proof. Choose any nonzero v ∈ V , a vector space with dimension n = dimV ,
and consider the vectors

v, Tv, T 2v, . . . , Tnv.

Then, there exists some nonzero linear relation

a0v + a1Tv + a2T
2v + · · ·+ anT

nv = 0.

Consider the real polynomial p(x) = anx
n + an−1x

n−1 + · · ·+ a0. We note that
p(T ) has a kernel, as (p(T ))v = 0. Note that a fact from elementary algebra is
that given any real polynomial p(x), we can factor it into a product of linear
and quadratic factors as

p(x) = ±
b∏
i=1

(x− λi) ·
∏
i

qi(x),

where each irreducible quadratic factor qi(x) is never zero on the reals. By
Corollary 15.0.1, we know that qi(T ) is invertible for all i. However, since p(T )
has nonzero kernel, there must exist some factor x− λi with nonzero kernel, so
λi is a real eigenvalue of T .

Once that we have a single real eigenvalue λ, let v be an eigenvector with
eigenvalue λ. Then, note that 〈v〉 is an invariant subspace under T , so its or-
thogonal complement 〈v〉⊥ is also invariant by Prop. 14.2. We can then continue
this process inductively on 〈v〉⊥, which allows us to find an orthonormal basis
of eigenvectors.
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Corollary 15.1.1 (Principal axis theorem). If T is self-adjoint, then there
exists an orthogonal matrix Q of eigenvectors and diagonal matrix Λ of real
eigenvalues such that

T = QΛQ∗.

Corollary 15.1.2 (Orthogonality of eigenspaces). If T is self-adjoint, then its
eigenspaces are mutually orthogonal. In particular, if Tv = αv and Tw = βw
such that α 6= β, then 〈v, w〉 = 0.

15.2 Orthogonal Operators

Note that O(1), the length-preserving transformations on the real line, is just
Z/2 = {+1,−1}. The next simplest case is O(2), which is precisely the symme-
try group of a circle – all rotations and reflections in R2.

There exists a subgroup of rotations within O(2) of just rotations, sometimes
denoted SO(2), which is isomorphic to S1 = R/Z. In particular, this is a normal
subgroup, and we have the short exact sequence

{e} → S1 → O2 → Z2 → {e}.

The structure of O(2) is indeed very similar to that of the dihedral group, and
indeed, we can embed any dihedral group Dn ⊂ O(2).

Exercise 15.1. How can we characterize O(3)?

Proposition 15.2 (Spectral theorem for orthogonal operators). Given a finite-
dimensional inner product space V and orthogonal operator T : V → V , we
can obtain a direct sum decomposition V = ⊕iVi into one or two-dimensional
invariant subspaces Vi, such that T |Vi has the property that:

• If dimVi = 1, then it is ±1.

• If dimVi = 2, then it is either a reflection or a rotation.

Furthermore, if we extend R to C, then we can diagonalize an orthogonal
operator to an orthonormal basis of eigenvectors, such that each complex eigen-
value has modulus 1. More on complex vector spaces tomorrow!
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16 October 11

Today we introduce Hermitian forms and operators, and we also briefly discuss
rings and modules.

16.1 Hermitian Forms

Exercise 16.1. Show that it is impossible to construct a positive definite bi-
linear form on a vector space over C.

Proof. Assume this exists, and b : V × V → C is bilinear. Then for any v ∈ V ,
b(v, v) > 0, but b(iv, iv) = i2b(v, v) < 0, so we have a contradiction.

Exercise 16.2. In fact, if V is a vector space of dimension at least 2 over C
and b is a bilinear form, then there exists some v such that b(v, v) = 0.

Proof. We can proceed in a way analogous to the discriminant-based proof of
Cauchy-Schwarz. Choose v1, v2 ∈ V that are independent. Let

b(v1, v1) = a, b(v1, v2) = b, b(v2, v2) = c.

Then,
b(xv1 + v2, xv1 + v2) = ax2 + 2bx+ c2.

Since C is algebraically closed, this quadratic polynomial in x has a root, so
v = xv1 + v2 is satisfies b(v, v) = 0.

Clearly, standard bilinear forms fail to be positive-definite in vector spaces
over C. What can we do instead, then?

Definition 16.1 (Hermitian form). Let V be a vector space over C. A Hermi-
tian form on V is a map

h : V × V → C

that has the following properties:

• Linear in the first factor: h(λv + u,w) = λh(v, w) + h(u,w).

• Conjugate symmetric: h(w, v) = h(v, w).

This sometimes called a sesquilinear form, as it is linear in the first factor but
only conjugate linear (“half-linear”) in the second factor.

Definition 16.2 (Hermitian inner product). If we additionally require h(v, v) >
0 for all nonzero v ∈ V , then h is a positive-definite Hermitian inner product.

Example 16.1 (Examples of Hermitian forms). Consider V = Cn. Then, one
example of a Hermitian inner product is

h((z1, . . . , zn), (w1, . . . , wn)) = z1w1 + · · ·+ znwn.
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Also, if V = L2 is the vector space of square-integrable functions S1 → C, then

h(f, g) =

∫
S1

f(z) · g(z) dz

is a Hermitian inner product.

Example 16.2 (Dual space). If h : V × V → C is Hermitian, then we can
define a map V → V ∗ given by v 7→ h(•, v). However, this map is not linear.

Definition 16.3 (Conjugate transpose). The adjoint of an operator T : V → V
on a Hermitian inner product space is also called the conjugate transpose.

Definition 16.4 (Hermitian matrix). A self-adjoint operator T : V → V on a
finite-dimensional Hermitian inner product space is called Hermitian, i.e., if

∀v, w : 〈T ∗v, w〉 = 〈v, Tw〉.

Definition 16.5 (Unitary matrix). In analogy to real orthogonal operators, an
operator U : V → V on a finite-dimensional Hermitian inner product space is
called unitary if

∀v, w : 〈Tv, Tw〉 = 〈v, w〉.

Proposition 16.1 (Spectral theorem, Hermitian). Given a finite-dimensional
Hermitian inner product space, consider a linear operator T . Then:

• If T is self-adjoint, then there exists an orthonormal basis of eigenvectors
with all real eigenvalues.

• If T is unitary, then there exists an orthonormal basis of eigenvectors
where all eigenvalues have modulus 1.

16.2 Rings and Modules

Recall that an R-module (Def. 6.9) is an algebraic structure with addition and
scalar multiplication, where scalars come from the commutative ring R.

Example 16.3 (Examples of rings). Notable examples of rings include:

• (Integers) Z,

• (Polynomials) k[x],

• (Multivariate polynomials) k[x1, . . . , xn],

• (Indefinite multivariate polynomials) k[x1, x2, . . .],

• (Fractions over p) Z[1/p] =
{
a
pn : a ∈ Z, n ∈ N

}
,

• (Fractions over not p) Z(p) =
{
a
b : a, b ∈ Z, p - b

}
.
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Definition 16.6 (Free module). Given any ring R, we can define

Rn = {(x1, . . . , xn) : xi ∈ R}

to be the free module of rank n. In general, we call a module free if it has a
basis (a spanning independent set).

Example 16.4 (Examples of modules). Examples of non-free modules include

• Any abelian group is a module over Z.

• Z/nZ, (Z/nZ)k, etc. are all modules over Z.

• Any ring is a module over itself.

• The ideals of a ring R are the submodules of R.

• The quotient ring R/I is an R-module for any ideal I.

Definition 16.7 (Span and independence). Observe that if M is any module,
and we have a subset {m1, . . . ,mn} ⊂M , then we can define the map

Rn
ϕ−→M,

(x1, . . . , xn) 7→ x1m1 + · · ·+ xnmn.

If ϕ is surjective, then we say that {m1, . . . ,mn} spans or generates M . If ϕ is
injective, then we say that {m1, . . . ,mn} are independent.

Note. Not every independent set is contained within a basis, and not every
spanning set contains a basis.
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17 October 16

Today we continue our lecture on rings and modules, and we wrap up on bilinear
forms.

17.1 Rings and Modules (cont.)

We know a lot about the linear algebra of vector spaces over fields, so can we
use this to learn about modules over rings? It turns out that very little about
vector spaces ports over to modules. We continue from where we left off from
last week.

Definition 17.1 (Basis). A subset S ⊂M is a basis if it is both spanning and
independent. In other words, consder the map ϕ : Rn →M given by

(a1, . . . , an) 7→
n∑
i=1

aisi.

If ϕ is an isomorphism, then S is a basis. However, unlike in vector spaces, bases
do not always exist in modules. If a basis of size n exists, then M is isomorphic
to Rn, and we call M a free module of rank n.

Proposition 17.1. Given a finitely generated module M and a submodule M ′ ⊂
M , it is possible that M ′ is not finitely generated.

Proof. Take R = k[x1, x2, . . .] as a module over itself, and consider the submod-
ule µ′ ∈ R consisting of polynomials with zero constant term, i.e., µ′ = {f ∈
R | f(0, 0, . . .) = 0}. This requires one generator for each xi, of which there are
a countably infinite number, so it is not finitely generated.

Definition 17.2 (Noetherian ring). A ring R is called Noetherian if any sub-
module of a finitely generated R-module is also finitely generated.

Definition 17.3 (Module homomorphism). A homomorphism between two
modules M and N over R is a map ϕ : M → N that is a homomorphism
of the underlying abelian groups, while respecting scalar multiplication. For
any λ ∈ R,

ϕ(λv) = λ · ϕ(v).

Proposition 17.2. As in the case of vector spaces, given any two R-modules,
the set of homomorphisms Hom(M,N) has the structure of an R-module.

Note. Unlike vector spaces, we can have M,N 6= 0 and Hom(M,N) = 0, i.e.,
the only homomorphism between them is the zero map. For example, consider
the two Z-modules M = Z/2Z and N = Z/3Z.

Definition 17.4 (Dual module). Given any module M over a ring R, we can
associate M to the dual module M∗ = Hom(M,R).
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Example 17.1 (Dual of the dual module). Like in the case of vector spaces,
there is a natural homomorphism M → (M∗)∗ given by the evaluation map
v 7→ evv, where evv(f) = f(v). However, unlike vector spaces, this map is not
always an isomorphism.

17.2 Wrapping up Bilinear Forms

We consider how to structurally characterize bilinear forms.

Proposition 17.3 (Inner products are unique). Any positive-definite inner
product on an n-dimensional real vector space V is isomorphic to the standard
inner product on Rn.

Proof. Perform the Gram-Schmidt process (Prop. 13.6) to find an orthonormal
basis for V . This immediately gives an isomorphism to Rn by projection onto
this basis. If we let the basis be {e1, . . . , en}, then the inner product of two
vectors is

〈u1e1 + · · ·+ unen, v1e1 + · · ·+ vnen〉 =
∑

1≤i,j≤n

uivj〈ei, ej〉 = u1v1 + · · ·+ unvn.

This is just the standard inner product on Rn.

Proposition 17.4 (Sylvester’s law of inertia). Given a finite-dimensional real
vector space V with a non-degenerate symmetric bilinear form b, there exists
an orthogonal basis {e1, . . . , en} for V such that b(ei, ej) = 0 for all i 6= j and
b(ei, ei) = ±1.

Proof. Repeat the proof of the last proposition, but instead of scaling vectors
to 1, we can only scale to ±1 since we do not assume that b(ei, ei) > 0.

Definition 17.5 (Standard bilinear forms). By the previous Proposition, any
non-degenerate symmetric real bilinear form is is isomorphic to

b(x, y) =

k∑
i=1

xiyi −
k+∑̀
i=k+1

xiyi.

Similarly, any non-degenerate Hermitian form on a complex vector space is
isomorphic to

h(x, y) =

k∑
i=1

xiyi −
k+∑̀
i=k+1

xiyi.

We call these the standard forms with signature (k, `).

Definition 17.6 (Indefinite orthogonal group). There are variants of the or-
thogonal/unitary groups preserving lengths under non-degenerate symmetric
bilinear forms of a given signature, denoted O(k, `) and U(k, `).
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Example 17.2 (Lorentz group). In special relativity, Minkowski spacetime has
a metric with signature (1, 3), and the corresponding symmetry group is O(1, 3),
called the Lorentz group.

Proposition 17.5 (Structure of skew-symmetric bilinear forms). Given an n-
dimensional vector space V over a field (with characteristic not equal to 2), and
q : V × V → k is a non-degenerate skew-symmetric bilinear form, then:

• n is even (n = 2k).

• V has a basis e1, . . . , e2k such that

q(ei, ej) =


1 if j = i+ k

−1 if j = i− k
0 otherwise

.

In other words, q has a representative expressed by the block matrix[
0 Ik
−Ik 0

]
.

Definition 17.7 (Symplectic group). The group of symmetries of V that pre-
serve a skew-symmetric form is called the symplectic group Sp(n).
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18 October 18

Today we begin discussing multilinear algebra, and we define the tensor product
of vector spaces. We will continue this on Monday as well.

18.1 Three Definitions of the Tensor Product

We present three equivalent definitions of the tensor product. For the rest of
this section, fix a field k, and let V and W be vector spaces over k. Some of the
following definitions of the tensor product V ⊗W will assume that V , W are
finite-dimensional, but they can be extended to infinite-dimensional cases.

Definition 18.1 (Tensor product basis). Let {e1, . . . , em} be a basis for V and
{f1, . . . , fn} be a basis for W . Then, V ⊗W is the vector space with a basis of
mn linearly independent elements, denoted by {ei ⊗ fj}.

Note. While the direct sum (or Cartesian product) of two vector spaces has
dimension m+ n, the tensor product has dimension mn.

Example 18.1 (Bilinear map to the tensor product). Give two vector spaces V
and W , we have a bilinear map V ×W → V ⊗W given by, for any v =

∑
i aiei

and w =
∑
j bjfj ,

(v, w) 7→
∑
i,j

aibj(ei ⊗ fj) = v ⊗ w.

The last notation v ⊗ w in this example motivates our second definition.

Definition 18.2 (Tensor products without bases). We define a very large vector
space U with basis {v⊗w | v ∈ V,w ∈W}. We then take the subspace U0 ⊂ U
generated by the relations

U0 =
〈
λv ⊗ w − λ(v ⊗ w),

v ⊗ λw − λ(v ⊗ w),

(u+ v)× w − u⊗ w − v ⊗ w,

u⊗ (w + x)− u⊗ w − u⊗ x
〉
.

Then, the tensor product is defined by taking the quotient of U modulo these
relations, or V ⊗W = U/U0.

Exercise 18.1. Verify that Definitions 18.1 and 18.2 are equivalent.

Definition 18.3 (Tensor product, standard definition). The tensor product
V ⊗W is a vector space with bilinear map β : V ×W → V ⊗W , such that for
all α : V ×W → U , there exists a linear map α̃ : V ⊗W → U such that

α = α̃ ◦ β.
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In other words, we can factor any bilinear map α : V ×W → U as follows.

V ⊗W

V ×W U

α̃

α

β

Essentially, for any vector space U , the vector space of bilinear maps from V ×W
to U is isomorphic to Hom(V ⊗W,U).

Exercise 18.2. Verify that Definitions 18.2 and 18.3 are equivalent.

Exercise 18.3. If we extend Definitions 18.2 and 18.3 to modules over commu-
tative rings, then the same rules apply. However, the properties of these tensor
products differ. Verify that Zm ⊗ Zn = Zmn, and that Z/2Z⊗ Z/3Z = 0.

18.2 Properties of Tensor Products

Definition 18.4 (Pure tensor). An element of V ⊗W is called rank 1, or pure,
if it is of the form v ⊗ w for v ∈ V and w ∈W .

Example 18.2. Given a two-dimensional vector space V = 〈e1, e2〉, a general
element of V ⊗ V can be given by

xe1 ⊗ e1 + ye1 ⊗ e2 + ze2 ⊗ e1 + we2 ⊗ e2.

This is a pure tensor if and only if xw = yz.

Pure tensors form a subset of V ⊗W , but not a subspace, as they are not
closed under linear combinations. In fact, any element of V ⊗ W is a linear
combination of pure tensors. This allows for the following definition.

Definition 18.5 (Rank of a tensor). In general, the rank of an element of
V ⊗W is the smallest η such that it can be expressed as a linear combination
of η pure tensors.

Proposition 18.1 (Tensor product identities). Given vector spaces U , V , and
W , the following identities involving tensor products hold:

(U ⊕ V )⊗W = (U ⊗W )⊕ (V ⊗W ),

(U ⊗ V )⊗W = U ⊗ (V ⊗W ),

(U ⊗ V )∗ = U∗ ⊗ V ∗.

Proof. Left as an exercise.

Proposition 18.2 (Linear maps are tensor products). Given any two vector
spaces V and W ,

Hom(V,W ) = V ∗ ⊗W.
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Proof. We can define a bilinear map V ∗ ×W → Hom(V,W ) given by

(`, w) 7→ ϕ : V →W

v 7→ `(v) · w.

This is an isomorphism, so by factoring this by the bilinear map V ∗ ×W →
V ∗ ⊗W , there must exist an natural isomorphism V ∗ ⊗W → Hom(V,W ).

Note. This gives us an alternative proof that

Hom(V,W ) = V ∗ ⊗W = V ∗ ⊗ (W ∗)∗ = Hom(W ∗, V ∗).

Proposition 18.3 (Bilinear forms are tensor products). For any vector space
V , the bilinear forms B(V ) = {V × V → k} are naturally isomorphic to

B(V ) = V ∗ ⊗ V ∗.

Proof. Left as an exercise.

Definition 18.6 (Tensor power). Given a vector space V and nonnegative
integer d, we define the d-th tensor power V ⊗d to be

V ⊗d = V ⊗ · · · ⊗ V︸ ︷︷ ︸
d times

.

Definition 18.7 (Tensor algebra). Observe that by associativity of the tensor
product, for any d, e ≥ 0 we have a natural map

V ⊗d ⊗ V ⊗e → V ⊗(d+e).

Then, we can form the algebraic structure

V =

∞⊕
d=0

V ⊗d,

which is a non-commutative ring called the tensor algebra of V .

Definition 18.8 (Symmetric tensors). Denote by Symd(V ) the subspace of V ⊗d

spanned by tensors that are invariant under actions by the symmetric group Sd,
which permute factors.
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19 October 21

Today we finish our discussion of tensors, before starting our second unit on
group theory on Wednesday.

19.1 Symmetric and Exterior Algebras

Recall that we have a decomposition of bilinear forms into symmetric and skew-
symmetric parts, denoted by

B(V ) = V ∗ ⊗ V ∗ = Bsymm(V )⊕Bskew(V ).

In particular, we have that

Bsymm(V ) = {tensors η ∈ V ∗ ⊗ V ∗ invariant under exchange of factors}
= Sym2(V ).

Definition 19.1 (Averaging map). We can define a linear map that makes a
general tensor symmetric as follows:

p : V ⊗d → V ⊗d,

v1 ⊗ · · · ⊗ vd 7−→
1

d!

∑
σ∈Sd

vσ(1) ⊗ · · · ⊗ vσ(d).

Definition 19.2 (Second definition of symmetric tensors). Symmetric tensors
are given by the quotient space

Symd(V ) = V ⊗d
/
〈t− σ(t) | t ∈ V ⊗d, σ ∈ Sd〉.

In effect, we are “modding out” by differences of two tensors that are permuta-
tions of each others’ factors.

Definition 19.3 (Third definition of symmetric tensors). We also can define
Symd V most nicely as a universal map, such that any symmetric d-linear form
α : V d → U can be factored into a linear map α̃ : Symd V → U .

Symd V

V d U

α̃

α

β

Proposition 19.1 (Basis for symmetric tensors). Given a basis {e1, . . . , en}
for V , we can find a basis for Symd V given by

eI = ei11 e
i2
2 · · · einn

= p((e1 ⊗ · · · ⊗ e1︸ ︷︷ ︸
i1

)⊗ · · · ⊗ (en ⊗ · · · ⊗ en︸ ︷︷ ︸
in

)),
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where I ranges over all multi-indices

I =

{
i1, . . . , in ≥ 0 :

n∑
α=1

iα = d

}
.

By a counting argument, this implies that dim(Symd V ) =
(
n+d−1

d

)
.

Definition 19.4 (Symmetric algebra). We can form the symmetric algebra of
V by taking the direct sum of symmetric tensors of all dimensions, denoted by

∞⊕
d=0

Symd(V ),

which naturally has the structure of a commutative ring, with multiplication
given by the tensor product

Symd V × Syme V → Symd+e V.

This is isomorphic to the multivariate polynomial ring k[e1, . . . , en].

Definition 19.5 (Skew-invariant tensors). Define the skew-invariant tensors of
dimension d to be the subspace of V ⊗d given by∧d

(V ) = {η ∈ V ⊗d | ∀σ ∈ Sd : σ(η) = sgn(σ)η}.

We also call this the wedge product.

Definition 19.6 (Skew-averaging map). Similar to before, we can define a
skew-averaging map on V ⊗d given by

q : V ⊗d → V ⊗d,

v1 ⊗ · · · ⊗ vd 7−→
1

d!

∑
σ∈Sd

sgn(σ) · vσ(1) ⊗ · · · ⊗ vσ(d).

Proposition 19.2 (Basis for skew-symmetric tensors). Analogous to the sym-

metric case, consider a basis {e1, . . . , en} for V . We can find a basis for
∧d

V
given by

eI = ei11 e
i2
2 · · · einn

= q((e1 ⊗ · · · ⊗ e1︸ ︷︷ ︸
i1

)⊗ · · · ⊗ (en ⊗ · · · ⊗ en︸ ︷︷ ︸
in

)),

where I ranges over all multi-indices

I =

{
i1, . . . , in ∈ {0, 1} :

n∑
α=1

iα = d

}
.

Note as a corollary that dim
∧d

V =
(
n
d

)
.
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Definition 19.7 (Exterior algebra). We can form the exterior algebra on V by
taking the direct sum of all wedge powers of V , denoted by

∞⊕
d=0

∧d
(V ),

which naturally has the structure of a cummutative ring, with multiplication
given by the wedge product∧d

V ×
∧e

V →
∧d+e

V.

19.2 Trace and Determinant

As an application of all the multilinear algebra we’ve talked about, we now
conclude with natural definitions of the trace and determinant.

Definition 19.8 (Trace). The trace of an n× n matrix M = [aij ] is given by

trM =

n∑
i=1

aii.

Our natural definition is to consider the contraction map κ : V ∗ ⊗ V → k given
by `⊗ v 7→ `(v). Then, the trace of a linear operator is simply the contraction
of the corresponding element of V ∗ ⊗ V (see Prop. 18.2).

Definition 19.9 (Determinant). The determinant of M = [aij ] is given by

detM =
∑
σ∈Sn

[
sgn(σ) ·

n∏
i=1

ai,σ(i)

]
.

Note that any linear operator T : V → V induces a natural map V ⊗d → V ⊗d

given by taking each factor under T . In other words,

v1 ⊗ v2 ⊗ · · · ⊗ vd 7−→ T (v1)⊗ T (v2)⊗ · · · ⊗ T (vd).

Recall that the dimension of
∧n

V is simply
(
n
n

)
= 1, so there is an induced map∧n

V →
∧n

V between one-dimensional vector spaces, which must be a scalar
multiplication. Then, the determinant of T is precisely this linear map.

Note. Observe that V ⊗W = Hom(V ∗,W ). In particular, for any such map
ϕ : V →W there exist bases e1, . . . , em for V and f1, . . . , fn for W , we can write
ϕ with block matrix representative given by an identity matrix with dimension
equal to its rank k. Then, we have that ϕ = e1 ⊗ f1 + · · ·+ ek ⊗ fk, the sum of
k pure tensors. We can also show that there is no way to express ϕ as the sum
of k− 1 or fewer pure tensors; hence, the rank of a tensor in V ⊗W is equal to
the rank of the corresponding linear map V ∗ →W .

Note. In general, we know nothing about the rank of elements in the triple
tensor product U ⊗ V ⊗W . In the case that dimU = 2, this classification was
completed by Kronecker in the 19th century.

60



20 October 23

Today we finally start Group Theory Part II, beginning with Artin §6.7.

20.1 Group Actions

The following construction proves useful in studying groups.

Definition 20.1 (Group action). An action of a group G on a set S is a map
ϕ : G×S → S that associates with group multiplication and preserves identity:

• ϕ(h, ϕ(g, s)) = ϕ(hg, s).

• ϕ(e, s) = s.

Equivalently, a group action is a homomorphism G → Perm(S). Oftentimes,
the action that we are discussing is implied by context, so we typically write
g(s) as a shorthand for ϕ(g, s).

Example 20.1. The following are standard examples of group actions:

• Sn acts on {1, . . . , n}.

• GLn(k) acts on kn.

• D8 acts on the vertices of a square.

• G acts on itself by left multiplication.

• G acts on itself by conjugation.

In the last two examples, there is an ambiguity when talking about “the
action” of a group on itself, since left multiplication and conjugation are both
studied. We have to be careful not to get these mixed up; Artin uses special
notation for this.

20.2 Orbits and Stabilizers

This subsection introduces the key constructions on group actions.

Definition 20.2 (Orbit). For all x ∈ S, the orbit of x is the set of all elements
that x can be sent to under action by any element of G, i.e.,

G · x = {gx : g ∈ G}.

We can alternatively define an equivalence relation on S such that s ∼ t if there
exists g ∈ G with gs = t. The orbits are then equivalence classes of S.

Note. Here, Joe uses the notation Os for the orbit of s rather than G · s, but I
will use with the more conventional notation.
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This last definition implies that S can be partitioned into the disjoint union
of its orbits. In effect, an action on S can be broken down into separate actions
on each orbit of S, so we have a name for actions with only one orbit.

Definition 20.3 (Transitive). An action is transitive if S = G ·s for any s ∈ S.

Observe that in our previous example, the action of G on itself by left multi-
plication is transitive, due to the existence of inverses. However, conjugation is
not transitive, as the identity element is in an orbit by itself. We call the orbits
of the conjugation action conjugacy classes of G.

Definition 20.4 (2-transitive). An action is called 2-transitive if for all s1 6= s2

and t1 6= t2 in S, there exists a g ∈ G such that g(s1) = t1 and g(s2) = t2.

Definition 20.5 (Stabilizer). The stabilizer subgroup of x, for any x ∈ S, is
the subgroup of G that sends x to itself. We write this as

Gx = {g ∈ G : g(x) = x}.

Note. Joe denotes this as stab(x) instead of Gx, but I am not as violent.

For example, consider a group G and subgroup H ⊂ G. When we take the
action of G on the left cosets G/H by left multiplication, note that the stabilizer
of of any element is H, and each element of G/H is a coset of H. It turns out
that this holds in general.

Proposition 20.1 (Stabilizers are conjugate subgroups). Let s and s′ be mem-
bers of the same orbit, given an action of G on S. Then, the stabilizers of s and
s′ are the same under conjugation.

Proof. Let s′ = hs. Then,

gs = s⇐⇒ (hgh−1)s′ = s′.

Proposition 20.2 (Orbit-stabilizer theorem). For any transitive group action
of G on S, let H be the stabilizer of any element. Then, there is a one-to-one
identification between G/H and S. In general, this implies that for any group
action (not necessarily transitive),

|G|/|Gx| = |G · x|.

Corollary 20.2.1 (Class equation). Given a finite group G, let C1, . . . , Ck ⊂ G
be the conjugacy classes. Then,

|G| = |C1|+ · · ·+ |Ck|.

In addition, by the orbit-stabilizer theorem, we have that |Ci| | |G| for all i, and
at least one of the conjugacy classes has size 1.
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Corollary 20.2.2. If |G| = pn where p is prime, then there exist at least p
conjugacy classes of size 1.

Proposition 20.3 (Groups of prime-square order are abelian). For any prime
p, all groups G such that |G| = p2 are abelian.

Proof. We know that {e} $ Z(G) because there are p conjugacy classes of size 1,
each of which belongs in the center. By Lagrange’s theorem, either |Z(G)| = p2,
in which case G is abelian, or |Z(G)| = p.

If |Z(G)| = p, then choose any x /∈ Z(G), and define the subgroup stabilizing
x to be Z(x) = {h ∈ G : hx = xh}. We know that Z(x) ⊃ Z(G), and also
that x ∈ Z(x). However, this implies that Z(x) has at least p + 1 elements, so
it must have order p2, and Z(x) = G. This implies that x commutes with all
elements of G, so x ∈ Z(G), which is a contradiction.

Finally, we prove a useful formula for counting orbits in a group.

Proposition 20.4 (Burnside’s lemma). Given an action of G on S, let S/G
be the set of orbits of S under the action. Also, let Sg be the subset of S that is
fixed by g. Then,

|S/G| = 1

|G|
∑
g∈G
|Sg|.

Proof. Consider the set

Γ = {(g, s) : g ∈ Gs} = {(g, s) : gs = s}.

We can then count the cardinality of Γ in two ways, either by elements of S or
G. This gives us two equivalent formulas,

|Γ| =
∑
g∈G
|Sg| =

∑
s∈S
|Gs|.

However, note that for each orbit of the action, Gs has the same size for all
elements of the orbit, as by Prop. 20.1. In particular, we can find this size using
the orbit-stabilizer theorem, which yields∑

g∈G
|Sg| =

∑
O⊂S

∑
s∈O
|Gs| =

∑
O⊂S

∑
s∈O

|G|
|O|

= |G| · |S/G|.

Dividing both sides by |G| yields the desired result.
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21 October 25

I was absent from this lecture. Topics covered included actions of rotations in
3D space on a sphere.
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22 October 28

Today we discuss symmetric groups and alternating groups.

22.1 Permutations

Recall that Perm(S) is the group of all permutations of S. When S is a finite
set, Perm(S) depends only on the order of the set, so when |S| = n, we write

Perm(S) ∼= Perm{1, 2, . . . , n} = Sn.

Recall from Sec. 4.4 the cycle notation for permutations. Any permutation is
uniquely expressible as a product of disjoint cycles, each of which commute.
Note also that in the language of group actions, each cycle of σ is an orbit of
the action of the subgroup 〈σ〉 generated by σ.

Proposition 22.1 (Conjugacy classes of Sn). Given any permutation τ and
cycle (a1 . . . ak), the conjugate of the cycle with respect to τ is

τ(a1 . . . ak)τ−1 = (τ(a1) τ(a2) . . . τ(ak)).

As a consequence, two permutations σ, σ′ ∈ Sn are conjugate if and only if they
have the same cycle lengths.

Corollary 22.1.1. The number of conjugacy classes of Sn is equal to p(n), the
number of integer partitions of n.

One natural question we might ask is to determine how many elements be-
long to each conjugacy class. To derive a formula for this, we first write a
partition of n in the form

n = b1 · 1 + b2 · 2 + b3 · 3 + · · · ,

where each bj reflects the number of occurrences of j in the partition sum.

Proposition 22.2. The number of elements in the conjugacy class of Sn given
by the partition {b1, b2, . . . , bn} is

n!∏n
i=1 i

bi · bi!
.

Proof. The number of ways of breaking up a set of n elements into labeled
subsets of size c1, . . . , ck is given by the multinomial coefficient(

n

c1; · · · ; ck

)
=

n!

c1! · · · ck!
.

If we instead have unlabeled subsets, we also need to divide by the number of
ways to arrange the subsets of each length, which yields the formula

n!

((1!)b1 · · · (n!)bn)(b1!b2! · · · bn!)
.
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Now, within each selected cycle of length i, we have (i − 1)! ways to cyclically
permute the elements of that cycle, so multiplying the formula above by the
factor ((i− 1)!)bi for each i gives us our final result.

Exercise 22.1. Count the number of permutations with no fixed points.

22.2 The Alternating Group

Since the alternating group An is pretty much almost the symmetric group
(it has index 2), we borrow the same cycle notation for permutations in An.
However, we will see that An gives us some additional restrictions on the lengths
of cycles, and also, conjugacy classes in An are no longer as simple as in Sn.

Recall that the sign of a permutation σ is given by the sign homomorphism,
taking Sn → Z/2Z = {±1}, which maps

σ 7−→
∏
i<j(xi − xj)∏

i<j(xσ(i) − xσ(j))
= ±1.

The kernel of this sign homomorphism is precisely An. Notice that any cycle
is an even permutation if it has odd length, and conversely a cycle is an odd
permutation if it has even length. Since every permutation can be broken up
into cycles, we can describe the elements of An in cycle notation.

Proposition 22.3. A permutation in Sn is in An if and only if it has an even
number of cycles of even length.

Since conjugacy classes of Sn are precisely given by permutations with the
same partition into cycle lengths, we know that every conjugacy class C ⊂ Sn
is either disjoint from An or contained in it. However, some conjugacy classes
may be broken up.

Example 22.1 (Additional conjugacy classes in An). In S4, we have that the
two cycles (123) and (124) are conjugate, as

(124) = (34)(123)(34).

However, these two permutations are not conjugate in A4, as (34) is not an
element of A4. In particular, by the orbit-stabilizer theorem, any conjuacy class
must divide the group in order. While the order of the (123) conjugacy class in
S4 is 8, the order of A4 is 12, so the conjugacy class must be broken up.

Proposition 22.4. If G acts transitively on S and H ⊂ G is a subgroup of
index 2, then the action of H on S has either one or two orbits.

Proof. Note that taking any a /∈ H, we have that G = H ∪ aH, the union of
two cosets. This implies that

G(s) = Hs ∪ aHs,

and the result follows immediately. If Hs = aHs, then the action of H on S
is transitive, but otherwise it has two orbits. This occurs if and only if there
exists an a /∈ H such that as = s.
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This means that given any conjugacy class C ⊂ Sn there are three possibil-
ities for the form of C in An:

• C ∩An = ∅, if C consists of odd permutations.

• C ⊂ An and is a conjugacy class in An.

• C ⊂ An and is the union of two conjugacy classes in An.

Exercise 22.2. What are the conditions on C for distinguishing between the
second and third of these possibilities?
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23 October 30

Today we continue with more facts about symmetric and alternating groups,
and we prove the Sylow theorems.

23.1 More on Symmetric and Alternating Groups

Recall the exercise from last lecture: to determine whether a conjugacy class Cb
in Sn is still a conjugacy class in An, or if is broken up into two orbits.

Proposition 23.1. A conjugacy class Cb ⊂ Sn that lies within An is broken up
into two conjugacy classes of An if and only if both:

• All cycles of the permutation have odd length (b2k = 0).

• No two cycles have the same length (b2k+1 ≤ 1).

Otherwise, Cb is a conjugacy class of An.

Proof. If b2k 6= 0 for some k, then a permutation σ ∈ Cb looks like

σ = ( )( )(a1 . . . a2k)( )( ) · · · ( ).

This clearly commutes with the even cycle (a1 . . . a2k) ∈ Sn\An, so it is invariant
under conjugation by this cycle (the action), and therefore the action of An on
Cb is transitive.

Also, if b2k+1 > 1, then σ ∈ Cb looks like

σ = ( )( )(a1 . . . a2k+1)(b1 . . . b2k+1)( )( ) · · · ( ).

Notice that this commutes with the permutation that swaps ai with bi for all
i, which is an odd permutation because 2k + 1 is odd. Thus, σ is once again
invariant under the action of a permutation in Sn \ An, so the action of An on
Cb is transitive.

The reverse direction of this proof is left as an exercise.

Example 23.1. The class equations for S5 and A5 are shown below.

Cb S5 A5

e 1 1
(12) 10 —
(123) 20 20
(1234) 30 —
(12345) 24 12 + 12
(12)(34) 15 15
(12)(345) 20 —

This fact is quite nice, and it leads to the following important corollary.
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Corollary 23.1.1 (A5 is simple). The class equation for A5 is

|A5| = 60 = 1 + 20 + 12 + 12 + 15.

However, no sub-sum (including 1) of classes divides 60. Thus, by Lagrange’s
theorem, there are no nontrivial normal subgroups of A5, so it is simple.

We’re only talking about A5 here, which is important in broader mathemat-
ics because it is related to the fact that quintic polynomials are not solvable.
However, it turns out that this is true more generally, as the following proposi-
tion shows.

Proposition 23.2. For any n ≥ 5, An is a simple group.

Proof. First, observe the following basic facts:

• An is generated by 3-cycles, as (ijk)(j`i) = (ik)(j`).

• In An for n ≥ 5, the 3-cycles form a single conjugacy class.

It suffices to prove that any nontrivial normal subgroup {e} 6= N ⊂ An contains
a 3-cycle. If so, then we can conjugate that 3-cycle to generate all 3-cycles in
An, which then generates the entire alternating group.

To complete the proof, choose any σ 6= e in N , and replace σ by τ = σa for
some a such that τ has prime order `. We can then do casework on `:

• ` ≥ 5. Conjugate each 5-cycle to its inverse, except one, (abcde), which
will map to (ebcad). Then, (abcde)(ebcad) = (abc).

• ` = 3. Conjugate each 3-cycle to its inverse, except one, π. This leaves us
with a single 3-cycle π2.

• ` = 2. Conjugate each 2-cycle to its inverse, except one, π. If there exists
any fixed point of the permutation, then we are done. Otherwise n is even
and at least 6, so there are at least three 2-cycles; conjugate all others to
their inverses. Then, we can multiply (ab)(cd)(ef) by (ad)(be)(cf) to get
(ace)(bdf), which reduces to the last case.

23.2 The Sylow Theorems

Take an arbitrary group G. Recall that by Lagrange’s theorem, we know that
the order of any element g ∈ G divides |G|. The converse of this statement is
that for any m | |G|, there exists an element of order m. This is clearly not
true, as the example of (Z/pZ)k easily shows.

We might consider a slightly weaker question: if there exists a subgroup of
order m for any m dividing |G|. It turns out that this is also false, as you can
take G = A5 and m = 30 as a counterexample. However, by weakening this a
little further, we arrive at the first Sylow theorem.
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Proposition 23.3 (First Sylow theorem). For every prime p of multiplicity n
in the factorization of |G|, there exists a subgroup H ⊂ G of order pn. This is
called a Sylow p-subgroup (or p-Sylow subgroup).

Corollary 23.3.1. For any group G and prime p such that p | |G|, there exists
an element g ∈ G of order p.

Proof. Let H be a Sylow p-subgroup, and let h ∈ H be a non-identity element.
By Lagrange’s theorem, h has order dividing |H| = pn, so let the order of h be

pk for k ≥ 1. Then, hp
k−1

has order p in G.

Proposition 23.4 (Second Sylow theorem). For any group G, all Sylow p-
subgroups of G are conjugate to one another. In other words, if H and K are
Sylow p-subgroups, then gHg−1 = K for some g ∈ G.

Proposition 23.5 (Third Sylow theorem). Let the number of Sylow p-subgroups
be s, and write |G| = pnm, where n is the multiplicity of p. Then, s | m and
s ≡ 1 (mod p).

We will prove all three theorems in the following lectures!
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24 November 1

I was absent from this lecture. Topics covered included examples of applying
the Sylow theorems to classify groups of orders 15 and 21, as well as proofs of
the first and second Sylow theorems.
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25 November 4

Today we finish a proof of the Sylow theorems and discuss one more application
of them. On Wednesday, we will move on to group presentations, finite abelian
groups, and representation theory.

25.1 Normalizers and the Third Sylow Theorem

We define a new notation related to conjugation of subgroups.

Definition 25.1 (Normalizer). Given a group G and any subgroup H ⊂ G, the
normalizer of H is given by

N(H) = {g ∈ G | gHg−1 = H}.

This is essentially the largest subgroup of G such that H is a normal subgroup
of N(H). Considering the action of G on its subgroups by conjugation, the
normalizer N(H) is just the stabilizer of the subset H, or G[H].

Considering the action of G under conjugation, this immediately tells us (by
the orbit-stabilizer theorem) that

#(subgroups conjugate to H) =
|G|
|N(H)|

.

We can use this fact to prove the third Sylow theorem.

Proposition 25.1 (Third Sylow theorem). If G is a finite group such that
|G| = pem and p - m, then a Sylow p-subgroup of G is any group of cardinality
p2. If sp is the number of such groups, then sp | m and sp ≡ 1 (mod p).

Proof. From the second Sylow theorem, if H is any Sylow p-subgroup, then all
other Sylow p-subgroups are conjugate to H. Then, by the last observation
about normalizer subgroups,

sp =
|G|
|N(H)|

.

However, note that |H| | |N(H)| by Lagrange’s theorem as H is a normal
subgroup of N(H), which implies that

sp |
|G|
|H|

= m.

This gives us the first part of the theorem. To prove the second fact, let T =
{Sylow p-subgroups of G}. Then, consider the action of H on T by conjugation,
and observe that [H] is a fixed point for this action (the set corresponding to
H). We claim that [H] is the only fixed point.

Assume that there exists some H ′ that is fixed under conjugation by H.
Then, this implies that H ⊂ N(H ′), and we also know that H ′ ⊂ N(H ′) as a
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normal subgroup. Since N(H ′) ⊂ G, the order of N(H ′) must be of the form
pe · n, so this means that H,H ′ are both Sylow p-subgroups of N(H ′), and by
the second Sylow theorem, they must be conjugate. However, recall that H ′ is
already a normal subgroup of N(H ′), so it is invariant under conjugation, and
therefore H = H ′ is the only fixed point.

Now, under action of H, T is a disjoint union of orbits. However, each orbit
must have size pk for some k by the orbit-stabilizer theorem, as the size must
divide the order of H. Since [H] is the only fixed point for the action of H on
T , it is the only orbit of size 1, so therefore |T | ≡ 1 (mod p).

25.2 Applying the Sylow Theorems

We present an example of classifying finite groups of a given order.

Example 25.1. What are the groups of order 12?

Observe that the number of Sylow 3-subgroups, by the third Sylow theorem,
is equal to 1 or 4. Similarly the number of Sylow 2-subgroups is equal to 1 or 3.
Let K be a Sylow 3-subgroup and H be a Sylow 2-subgroup of G, and consider
the following cases.

• s2 = s3 = 1. This means that H,K are each normal and G = H ×K, so
G is either Z/4Z× Z/3Z or Z/2Z× Z/2Z× Z/3Z.

• s3 = 4, s2 = 3. This would mean that ignoring the identity element, there
are at least 2s3 = 8 elements with order 3 and 3s2 = 9 elements with order
2 or 4. However, 1 + 8 + 9 > 12, so this case is impossible.

• s3 = 4, s2 = 1. Then, H is normal and K is not normal. Observe that G
acts on the set T3 of Sylow 3-subgroups of G under conjugation. Then,
the stabilizer G[Ki] has order equal to |G|/|T3| = 3, but observe that
Ki ⊂ G[Ki], so thus each Ki is fixed by only elements of itself. This means
that no non-identity element of G fixes all four elements of T3, so there
exists an inclusion G ↪−→ S4. Hence, G ∼= A4.

• s3 = 1, s2 = 3. Let K = {1, y, y2}. For all x ∈ H, note that xyx−1 ∈ K
because K is normal, so xyx−1 is either y or y2. This breaks up into two
cases based on the structure of H.

– H ∼= Z/4Z. Let x be a generator of H, and note that if xyx−1 = y
then x and y would commute and then G = Z/12Z, which contradicts
our assumption that s2 = 3. Then xyx−1 = y2, and G is generated
by x, y under the relations x4 = y3 = e and xyx−1 = y2. This is
called the dicyclic group of order 12, denoted Q12.

– H ∼= Z/2Z × Z/2Z. Let H = 〈x, z〉. This implies that xyx−1 = y2

and zyz−1 = y, so G is generated by x, y, z under the relations x2 =
z2 = (xz)2 = e, xyx−1 = y2, and zyz−1 = y. It turns out that this
is isomorphic to the dihedral group D12.

Thus, there are two abelian and three non-abelian groups of order 12.
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26 November 6

Today we discuss free groups, generators, and relations in the context of group
presentations. We will also talk about finite abliean groups.

26.1 Free Groups and Presentations

Recall that the definition of the free group on 2 generators (Def. 5.6) to be the set
of all words on a, b, a−1, b−1, with law of composition given by concatenation and
reduction. We can generalize this to n generators with the following definition.

Definition 26.1 (Free group). The free group Fn on n generators is given by
all words on c1, c

−1
1 , . . . , cn, c

−1
n , with law of composition given by concatenation

of words, and subject to the reduction relation cic
−1
i = e.

Note that we can additionally define FS for any set S, but in practice this
rarely comes up because we’ll have at most countably many generators.

Recall that we can also generalize this definition to the free product of two
groups G ∗ H, which is a group consisting of reduced words with elements
alternating between G and H (see Def. 5.7).

Proposition 26.1 (Free product in category theory). The free product is the
coproduct (or sum) in the category of groups.

Proof. Recall it suffices to show that there exists a unique ϕ such that the
following diagram commutes for any T and homomorphisms α, β.

T

A A
∐
B B

α

i1

ϕ β

i2

In other words, any two homomorphisms A→ T and B → T factor to a unique
homomorphism A∗B → T . This is easy to check because A∪B generates A∗B
with no restrictions (hence a “free” product).

Corollary 26.1.1. In the category of abelian groups, the free product is the
same as the ordinary product, and thus the coproduct and product coincide.

Example 26.1 (Examples of free products). Free products tend to show up
often in standard examples. For example, F2 = Z ∗ Z is the the free group
on two generators. Also, D∞ = Z/2 ∗ Z/2 is the infinite dihedral group, and
Z/2 ∗ Z/3 ∼= SL2Z is the group of 2× 2 matrices with determinant 1 on Z.

With all these interesting properties of free groups, it is then instructive to
consider how they might relate to groups in general. If G is a finitely generated
group (with n generators), there exists a surjective homomorphism Fn → G.
Then, the kernel K ⊂ Fn is the subgroup of relations on the free group.
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Definition 26.2 (Group presentation). If G is a finitely generated group, then
call G finitely presented if the kernel K is also finitely generated. Then, we can
write the group presentation of G as

G = 〈Fn | K〉 = 〈α1 . . . αn | β1 . . . βm〉,

for some symbols {αj} and relations {βj} each consisting of words of symbols.

Example 26.2. The non-abelian group with 21 elements has presentation

G21 = 〈x, y | x7, y3, yxy−1x−2〉.

Note that although presentations exist, they do not actually tell us much
information about groups. In general, it turns out that the problem of deter-
mining the structure of a group based on its presentation is undecidable (this
is called the word problem).

26.2 Finite Abelian Groups

We first write down the “big shot” structure theorem about finite abliean groups.

Proposition 26.2 (Fundamental theorem of finite abelian groups). Any finite
abelian group G is the product of cyclic groups

G ∼=
⊕̀
i=1

Z/ai.

Note that in general the ai’s are not uniquely determined by G, but they can be
factored uniquely into a product of prime powers.

Proof. Let |G| = n =
∏k
i=1 p

ei
i . By the Sylow theorems, there are unique Sylow

p-subgroups Hi ⊂ G for each i. Furthermore, each of these subgroups is unique
by the second Sylow theorem (because they are normal), so G is the direct sum
of the Hi. This provides us with half of the proof.

The remaining part of the proof is to show that if G is an abelian group of
order pe, then there exist some ei summing to e such that such that

G ∼=
m⊕
i=1

Z/pei .

The rest of the proof is deferred to Math 123, as it requires the structure theorem
of finitely generated modules over a principal ideal domain.

Corollary 26.2.1 (Number of finite abelian groups). Given an integer n with

prime factorization n =
∏`
i=1 p

ei
i , the number of distinct finite abelian groups

with order n is given by ∏̀
i=1

p(ei),

where p(k) is the partition function representing the number of distinct integer
partitions of k.
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26.3 Group Characters

While on the topic of abliean groups, we can see one application of this structure
theorem to the new subject of characters.

Definition 26.3 (Character of an abelian group). Given an abelian group G,
a character χ of G is a homomorphism

G −→ S1 = R/Z = {z = C : |z| = 1}.

Observe that the set of all characters on G forms a group Ĝ = Hom(G,S1) with
multiplication given by (χψ)(g) = χ(g)ψ(g).

Lemma 26.3 (Characters of products). For any abelian groups G,H,

Ĝ×H = Ĝ× Ĥ.

Proof. Apply Prop. 26.1.

Lemma 26.4 (Characters of cyclic groups). For any n, there is an isomorphism

Ẑ/n ∼= Z/n, though this is not canonical.

Proof. Observe that characters of Z/n are determined by the image of 1, which
can be sent to an n-th root of unity e2πik/n, for some k ∈ {0, 1, . . . , n− 1}. We
conclude that there we can construct the map χ 7→ k, which is an isomorphism

from Ẑ/n to Z/n.

Proposition 26.5 (Characters of finite abelian groups). If G is a finite abelian

group, then G ∼= Ĝ, though not canonically.

Note that this theorem does not necessarily hold when G is infinite, as in
the example Ẑ = S1. However, when G is finite, this gives the characters a
structure analogous to that of a dual vector space. In particular, it turns out

that there is a natural isomorphism between G and
̂̂
G given by

g 7→ (χ 7→ χ(g)).

From here, we don’t have enough time to start representation theory, but we’ll
do it next lecture. Our main reference will be Fulton-Harris chapters 1–3, and
an alternative source is Serre’s Linear representation of finite groups.
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27 November 8

Today we start representation theory. For a little bit of a history lesson: in
the 19th century, a group was simply a subset of GLn closed under matrix
multiplication and inversion. However, in the 20th century, people began seeing
groups as sets with a law of composition satisfying certain axioms, which are
abstract equivalence classes of “19th century” groups under isomorphism.

Thus, the problem of “classifying all groups” in the 19th century sense breaks
up into two steps:

• Classifying all abstract groups.

• For a given G, describe all ways G can be mapped to GLn.

27.1 Representations

We therefore study the second of the above tasks, which forms the basis of
representation theory.

Definition 27.1 (Representation). Given a finite group G, a representation is a
vector space V on which G acts, such that for all g ∈ G, the action g : V → V is
linear. Equivalently, a representation of G is a homomorphism ρ : G→ GL(V ).

Note that this definition does not necessarily guarantee that each group
element reflects a distinct linear transformation. We have another term for this.

Definition 27.2 (Faithful representation). A representation ρ : G→ GL(V ) is
called faithful if it is injective. In other words, there is no non-identity element
g ∈ G that acts on all vectors in V as the identity.

At the other end of the spectrum, we can always represent a group by trivially
mapping all elements to the identity morphism.

Example 27.1 (Trivial representation). If ρ = e, meaning that the action of
every group element is the identity, then this is a representation called the trivial
representation of G on V .

Note. We will abuse notation by calling a particular representation of G on a
vector space V simply by the name V , implying the representation structure.

27.2 Constructions on Representations

For the rest of this course (except the last lecture), we assume that V will always
be a vector space over C. Our end goal will be to classify all representations of
a finite group. However, first we need to get through a few definitions.

Definition 27.3 (Homomorphism of representations). Let V , W be representa-
tions of a group G. A homomorphism is a linear map ϕ : V →W that respects
the action of G on V , W , meaning that

ϕ(gv) = g(ϕ(v)).
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This makes the following diagram commute.

V W

V W

ϕ

g g

ϕ

We call the set of all homomorphisms from a representation V to another rep-
resentation W by the name HomG(V,W ).

Definition 27.4 (Subrepresentation). In the special case of a faithful repre-
sentation V of G, then a subrepresentation U is a subspace U ⊂ W such that
g(U) = U for all g ∈ G.

Definition 27.5 (Trivial subrepresentation). If V is any representation of the
group G, then the trivial subrepresentation is the maximal subrepresentation of
V that is trivial. It is defined by

V G = {v ∈ V | ∀g ∈ G : gv = v}.

Note. Given a representation V and a subrepresentation of G on U , then we
can also define the induced action of G on the quotient space V/U , which is
called the quotient representation.

Definition 27.6 (Irreducible representation). We call a representation V of G
irreducible if there does not exist a nontrivial proper subspace W $ V such that
g(W ) = W .

Definition 27.7 (Linear algebra on representations). Given representations
V,W of G, the direct sum V ⊕W has the structure of a representation of G,
with action

g(v, w) = (gv, gw).

The tensor product V ⊗W also has the structure of a representation, with action

g(v ⊗ w) = g(v)⊗ g(w).

The dual space V ∗ has the structure of a representation, with action

g 7→ tg−1.

We can similarly define V ⊗n, Symn V , and
∧n

V , such that the corresponding
identities apply. In particular, we have that Hom(V,W ) = V ∗ ⊗W , so we can
define the action of G on Hom(V,W ) to be

g : ϕ 7−→ gW ◦ ϕ ◦ g−1
V .

Exercise 27.1. Given representations V , W , of G, show that

Hom(V,W )G = HomG(V,W ).
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28 November 11

Today we talk about complete reducibility, an important property of represen-
tations of finite groups, as well as Schur’s lemma. We’ll also give some concrete
examples of representations.

28.1 Complete Reducibility

We move on to an important theorem, which will first require a lemma.

Lemma 28.1. Given a representation V of G, there exists a Hermitian inner
product H : V × V → C that is invariant under G, i.e,

H(gv, gw) = H(v, w), ∀v, w ∈ V, g ∈ G.

Proof. We start with any Hermitian inner product H0 : V ×V → C, and define
a new Hermitian inner product H by applying the “averaging” map

H(v, w) =
∑
g∈G

H0(gv, gw).

Since this is a sum of Hermitian inner products, it is itself a Hermitian inner
product, which is clearly invariant under G. Note that this is not canonical
because of the choice of H0, though we will see later on that it is unique when
V is irreducible.

Proposition 28.2 (Complete reducibility). Every representation of a finite
group G is a direct sum of irreducible representations. In other words, given a
representation V of G and subrepresentation (invariant subspace) U ⊂ V , there
exists another invariant W ⊂ V such that V = W ⊕ U .

Proof. Using the previous lemma, we know that for any invariant U , gU = U for
all g ∈ G, and g is also a unitary operator under the Hermitian inner product
H. This implies that U⊥ is also invariant under g, so we are done.

Alternatively, we can also prove this without using Hermitian forms. Let
W0 ⊂ V be any complementary subspace such that V = U ⊕W0. Then, let
π0 : V → U be the projection map with kernel W0, and define π : V → U to be
the “averaged” map

π(v) =
∑
g∈G

g−1π0(gv).

Observe that π applied to any element of U is simply a constant multiple of
the identity, so π|U = |G| · idU . This means that π is surjective. Furthermore,
observe that the kernel W = ker(π) is invariant under g, so V = U ⊕W .

Note. Both of these proofs assume that we are working on vector spaces over
a field of characteristic zero. This statement is false in groups with positive
characteristic.
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Example 28.1 (Irreducibility of an infinite group). Consider the representation
of R in R2 given by the action

t 7−→
[
1 t
0 1

]
.

Then, the x-axis 〈(1, 0)〉 is an invariant subspace, but there does not exist a
complementary invariant subspace under this action.

Note. Complete reducibility still holds for special classes of infinite groups: in
particular, representations that consist of continuous maps on S1. In this case,
we can represent this Lie group by replacing the sum in the second proof above
by an integral on the unit circle.

28.2 Schur’s Lemma

We move to a foundational lemma in the study of irreducible representations.

Proposition 28.3 (Schur). Assume that V , W are irreducible representations
of a finite group G over C, and let ϕ : V → W be a homomorphism of repre-
sentations. Then,

i) ϕ is either an isomorphism or zero.

ii) In the case that V = W , φ = λ · id for some λ ∈ C.

Proof. Note that kerϕ ∈ V and imϕ ∈ W are invariant subspaces, so by the
complete reducibility of representations, either kerϕ = 0 and imϕ = W , or
kerϕ = V and imϕ = 0. This gives us the first part.

For the second part, observe that if we have a homomorphism ϕ : V → V ,
then this must have an eigenvalue λ by the algebraic closure of C. Then, ϕ−λI
has a kernel, so hence it is zero.

Note. Observe that if

V = V ⊕a11 ⊕ · · · ⊕ V ⊕akk

= W⊕b11 ⊕ · · · ⊕W⊕b`` ,

then let ϕ be an isomorphism between these two direct sums. Take any Wi, and
consider ϕ|Wi applied to each Vj . By Schur’s lemma, this is either zero or an
isomorphism. Thus, we must have a copy of each Vj in the {Wi}.

Proposition 28.4 (Representations of abelian groups). If G is abelian, then
any irreducible representation of G is one-dimensional.

Proof. In general, if V is a representation of G, then for all g ∈ G there is a map
g : V → V . Considering g as a linear map, in general we do not have that g is
a homomorphism of representations from V to V , as g(hv) 6= h(gv). However,
this is true for the special case of abelian groups!

Then, by Schur’s lemma we know that each element of g is a constant times
the identity, so V as an irreducible representation must be one-dimensional.
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Corollary 28.4.1 (Simultaneously diagonalizable representations). Given any
representation of a finite abelian group G in GL(V ), there exists a basis for V
such that all actions g ∈ G are diagonal.

28.3 Examples of Representations

Given our last statement about representations of abelian groups, the first in-
teresting example should be G = S3. This has a couple of irreducible represen-
tations.

Example 28.2 (Trivial representation). There is the trivial representation U ∼=
C with actions given by the identity.

Example 28.3 (Alternating representation). The alternating representation of
S3 on U ′ ∼= C is given by σ(v) = sgn(σ) · v, for all σ ∈ S3 and v ∈ V .

Example 28.4 (Standard representation). The standard representation of S3

on V ∼= C2 is the representation that permutes basis elements, on the subset of
(a1, a2, a3) ∈ C3 such that a1 + a2 + a3 = 0.

Note that we might consider the permuation representation of S3 on C3

directly, but this has an invariant subspace given by triples (a1, a2, a3) such
that a1 = a2 = a3. Thus, this representation is not irreducible; it is a direct
sum of the standard representation and the trivial representation of S3.

Proposition 28.5. U , U ′, V are the only irreducible representations of S3.

Proof. Suppose that W is any representation of S3, and let τ ∈ A3 ⊂ S3 be a
3-cycle. Then, we can find a basis v1, . . . , vn for W consisting of eigenvectors of
τ , meaning that

W = 〈v1, . . . , vn〉 : τ(vi) = ωaivi,

where ω = e2πi/3 is a principal third root of unity.
Now, say that σ ∈ S3 is a transposition, so that σ and τ generate S3 with

the relation στσ−1 = τ2. We would like to know that σ does to vi. Observe
that if τ(vi) = ωvi,

τ(σ(vi)) = σ(τ2(vi)) = σ(ω2vi) = ω2 · σ(vi).

In conclusion, σ(vi) is again an eigenvector for τ , but with eigenvalue ω2. We
can similarly that σ sends the ω2-eigenspace to the ω-eigenspace, and the 1-
eigenspace to itself.

We now proceed by casework. Let v be any eigenvector for τ with eigenvalue
ω, and consider 〈v, σv〉 ⊂W . If this is an invariant subspace, then it is congruent
to the standard representation V . Otherwise, if σv = ±v, then (στ)2v = ω2v,
which is a contradiction.

Finally, if τv = v, then we have two cases. If σv is a multiple of v, then 〈v〉
is invariant and either U or U ′. Otherwise, σv is linearly independent from v,
so 〈v + σv〉 is invariant and congruent to U .
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Now, suppose that W is any representation of S3. Then, we know that

W = U⊕a ⊕ U ′⊕b ⊕ V ⊕c,

for some a, b, c. We might ask how to determine a, b, and c. To do this, we
consider the dimensions of various eigenspaces of group elements τ and σ. These
are determined by the number of eigenvalues of each in U , U ′, and V , so the
dimensions satisfy:

• dimension of the 1-eigenspace of τ : a+ b.

• dimension of the ω-eigenspace τ : c.

• dimension of the 1-eigenspace of σ: a+ c.

• dimension of the −1-eigenspace of σ: b+ c.

Note. In this case, it is enough to consider the eigenvalues of only τ and σ not
because they generate S3, but because they give us one representative for each
conjugacy class (which maps to similar matrices).

For an example of applying this, we might ask which irreducible represen-
tations of S3 appear in V ⊗ V . Consider the basis for V consisting of eigen-
vectors e1, e2 for τ , with eigenvalues ω and ω2. Then, the eigenvectors for
τ : V ⊗ V → V ⊗ V are precisely ei ⊗ ej for all i, j ∈ {1, 2}, so the eigenvalues
are ω2, 1, 1, ω. Similarly, σ acts on V ⊗V with eigenvalues 1, 1, −1, −1. Thus,
we can verify that V ⊗ V ∼= U ⊕ U ′ ⊕ V .

Exercise 28.1. Write Sym2 V and Sym4 V as a direct sum of irreducible rep-
resentations.
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29 November 13

Today we recap the representations of S3, and we introduce character theory.

29.1 Theory of Characters

We begin with some motivation for characters. Suppose a group G acts on a
complex vector space V . For each g ∈ G, there is a collection of eigenvalues
of the corresponding linear operator, which is an unordered set of n values.
Furthermore, there is a bijection between unordered n-tuples of zi ∈ C, and
monic polynomials of degree n in C[x], given by the polynomial with those
roots

∏
(z − zi). Finally, there is a correspondence between monic polynomials

and their coefficient sequence, which is an ordered n-tuple of ai ∈ C given by

a1 = −(z1 + z2 + · · ·+ zn),

a2 =
∑
i<j

zizj ,

...

an = (−1)n
n∏
i=1

zi.

To put this in context, take the multivariate polynomial ring C[z1, . . . , zn], which
Sn acts on by permuting the variables.

Definition 29.1 (Symmetric polynomials). The subring C[z1, . . . , zn]Sn fixed
by permuation of variables is called the symmetric polynomials of degree n, and
it is generated by the elementary symmetric polynomials a1, a2, . . . , an.

It turns out, however, that elementary symmetric polynomials are not the
only set that generate the symmetric polynomials.

Proposition 29.1 (Newton’s identities). Let the power sums of degree n be

b1 = z1 + · · ·+ zn,

b2 = z2
1 + · · ·+ z2

n,

...

Then, the set {b1, b2, . . . , bn} also span C[z1, . . . , zn]Sn .

Proof. We can verify the identities

e1 = p1,

2e2 = e1p1 − p2,

3e3 = e2p1 − e1p2 + p3.

This pattern continuous, so the first n power sums generate the elementary
symmetric polynomials.
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Our goal with characters is to communicate information about the eigenval-
ues of g : V → V . A naive way to do this is by transmitting the elementary
symmetric polynomials in those eigenvectors, but this is inefficient. Instead, we
choose to communicate the sum of the eigenvalues for each g, which motivates
the following definition.

Definition 29.2 (Character of a representation). The character of a represen-
tation V of a group G is a function χV : G→ C given by

χV (g) = tr(g : V → V ).

For a given g, this function determines all the power sums of eigenvalues of g
given by χV (g), χV (g2), χV (g3), etc., and hence all the eigenvalues of g.

To get a feeling for characters of representations, they satisfy (or don’t sat-
isfy) the following properties.

• χV is not necessarily a homomorphism.

• It is a class function: constant on conjugacy classes, as the trace of similar
matrices are equal.

• χV : G→ C determines the eigenvalues of each g : V → V .

• To be shown later: χV determines V , which will allow us to prove that
there are a finite number of irreducible representations of a finite group,
as well as classify these representations.

Let’s look at some specific examples of characters.

Example 29.1 (Characters of constructions). For any representations V , W :

• χV (e) = tr I = dimV .

• χV⊕W = χV + χW .

• χV⊗W = χV χW .

• χV ∗ = χV .

• χHom(V,W ) = χV χW .

The third of these formulas arises from the fact that the eigenvectors of
gV⊗W are of the form vi ⊗ wj , for eigenvectors vi of gV and wj of gW . The
fourth formula comes from the fact that gV ∗ = tg−1, so the eigenvalues zi of
gV become their multiplicative inverses z−1

i . However, since all elements g ∈ G
have finite order, their eigenvalues must have modulus 1 (roots of unity), so
z−1
i = zi, which is additive.
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30 November 15

Today we introduce a couple of basic definitions, then continue our discussion
of characters.

30.1 Permutation Representations

If G acts on a set S, then we can form a vector space V with one basis element
for each element of the set. This provides a link between group actions and
representations.

Definition 30.1 (Permutation representation). Given a group G acting on a
set S, construct a vector space V with basis {es}s∈S . Then, the permutation
representation of G acts on V by permuting the corresponding basis vectors.

An important action of any group is left multiplication over itself as a set.

Definition 30.2 (Regular representation). Given any group G, the action of
G on itself has a corresponding permutation representation called the regular
representation of G. Because group elements are invertible, this is also a faithful
representation.

30.2 More on Character Theory

We talked last week about how to find characters of various constructions on
representations, which all had nice formulas. Here we present a slightly more
interesting example.

Example 30.1 (Character of the exterior square). Suppose we have a repre-

sentation V of a group G, and consider
∧2

V . If V has a basis v1, . . . , vn of
eigenvectors for g with eigenvalues α1, . . . , αn, then a basis of eigenvectors for∧2

V is given by {vi ∧ vj} for 1 ≤ i < j ≤ n. Then, the character of the exterior
square is

χ∧2 V (g) =
∑

1≤i<j≤n

αiαj =
(
∑
i αi)

2 −
∑
i α

2
i

2
=
χV (g)2 − χV (g2)

2
.

We can also do similar calculations for the characters of the symmetric pow-
ers. Now, suppose that G acts on the set S, and take the permutation repre-
sentation V of G. Since the trace of a matrix is the sum of the diagonal entries,
this is the number of fixed points of a permutation, so

χV (g) = #(elements fixed by g) = |Sg|.

Example 30.2 (Character table for S3). We have the following character table
(with one representative for each conjugacy class) for S3:

85



e (12) (123)
χU 1 1 1
χU ′ 1 −1 1
χV 2 0 −1
χW 3 1 0

Here, W is the permutation representation of S3 acting on a 3-element set, and
observe that since W = U ⊕ V , the two rows for χU and χV add up to χW .

The interesting observation here is that the rows of this character table are
independent. If Z is any representation of S3 given by U⊕a⊕U ′⊕b⊕ V ⊕c, then

χZ = a(1, 1, 1) + b(1,−1, 1) + c(2, 0,−1).

Thus, by being able to compute the characters (or in general, the eigenvalues
of each conjugacy class), we can decompose any representation of a group into
its irreducible parts.

Now, we can start analyzing certain projections.

Proposition 30.1 (Projection formula). Consider any finite group G with ir-
reducible representations V1, . . . , Vk. If V is any representation of G, then

V = V ⊕a11 ⊕ · · · ⊕ V ⊕akk .

Without loss of generality, let V1 be the trivial one-dimensional representation.
This satisfies

V ⊕a11 = V G = {v ∈ V | ∀g ∈ G : gv = v}.

Furthermore, if we define the idempotent averaging map φ : V → V G given by

φ(v) =
1

|G|
∑
g∈G

gv,

then we can express the dimension of the trivial representation by the formula

a1 = dimV G = tr(φ) =
1

|G|
∑
g∈G

χV (g).

Proof. Observe that φ is a homomorphism of representations because

φ(hv) =
1

|G|
∑
g∈G

ghv =
1

|G|
∑
g∈G

gv = φ(v),

hφ(v) =
1

|G|
∑
g∈G

hgv =
1

|G|
∑
g∈G

gv = φ(v).

This also means that the image of φ is invariant under actions by all elements
in G, so it is a subset of V G. The idempotency φ2 = φ also follows, showing
that φ is a projection map. As a consequence, this gives us the direct sum
decomposition V = V G ⊕ ker(φ), and the result follows.
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Corollary 30.1.1. Given representations V and W of a group G, the number
of linearly independent homomorphisms of representations from V to W is

dim HomG(V,W ) = dim Hom(V,W )G =
1

|G|
∑
g∈G

χV (g)χW (g).

In other words, if C is the set of conjugacy classes in G, then define the Hermi-
tian inner product H on CC, which is the set of class functions on G, by

H(α, β) =
1

|G|
∑
g∈G

α(g)β(g).

(Note that this is the opposite sign convention of our definition of a sesquilinear
form from before, but let’s not worry about that.) Then,

dim HomG(V,W ) = H(χV , χW ).

This corollary allows us to perform the following magic trick.

Proposition 30.2 (Irreducible characters are orthonormal). If V1, . . . , Vk are
irreducible representations of G, then

H(χVi , χVj ) =

{
0 i 6= j

1 i = j
.

Proof. This follows directly from Schur’s lemma. This means that if V 6= W ,
then HomG(V,W ) = 0, and otherwise, HomG(V, V ) = C · id.

Corollary 30.2.1. The characters χVi are linearly independent in CC, so there
number of irreducible representations is at most the number of conjugacy classes
in G (we will see later that this is an equality).

Corollary 30.2.2. Any representation V of G is completely determined by χV .
In particular, note that there is some irreducible decomposition V =

⊕
i V
⊕ai
i .

Then, by the properties of characters,

χV =
∑
i

aiχVi .

Applying Prop. 30.2 to this equation, we have

H(χVi , χV ) = ai.

Corollary 30.2.3. A representation V of G is irreducible if and only if

H(χV , χV ) = 1.

In general, we have that

H(χV , χV ) =
∑
i

a2
i .
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Example 30.3 (Character table of S4). We can analyze the characters of S4.
This has 5 conjugacy classes, with representatives e, (12), (123), (1234), and
(12)(34). The irreducible representations are U (trivial), U ′ (alternating), V
(standard), V ′ = V ⊗ U ′, and one more. Also, let Z be the permutation repre-
sentation. The character table is as follows:

e (12) (123) (1234) (12)(34)
χU 1 1 1 1 1
χU ′ 1 −1 1 −1 1
χV 3 1 0 −1 −1

χV⊗U ′ 3 −1 0 1 −1
χW 2 0 −1 0 2
χZ 4 2 1 0 0
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31 November 18

Today we continue discussing character theory.

31.1 More on Character Theory (cont.)

We first look at an application of the theory we developed last Friday. For any
group G, recall that it has a regular representation R given by taking the action
of left multiplication on a set of basis vectors, one for each element. This is
not an irreducible representation, so it’s interesting to consider how it might be
decomposed.

Proposition 31.1 (Regular representation decomposition). If R is the regular
representation of a group G and V1, . . . , Vk are the irreducible representations,
then suppose that

R = V ⊕a11 ⊕ · · · ⊕ V ⊕akk .

Then, ai = dimVi. In plain English, each irreducible representation appears in
the regular representation a number of times equal to its dimension.

Proof. We apply Corollary 30.2.2, which yields

ai = H(χR, χVi)

=
1

|G|
∑
g∈G

χR(g) · χVi(g)

= χVi(e)

= dimVi.

Corollary 31.1.1. For any finite group G, if all the irreducible representations
of G are V1, . . . , Vk, then

|G| =
k∑
i=1

(dimVi)
2.

This gives us a way to determine when we have found all irreducible repre-
sentations of a given group. This could be useful, for example, in finding the
character table of S4.

31.2 Applications of Characters

Example 31.1 (Plethysm). In the representation theory of S4, we might ask
what is V ⊗ V as a sum of irreducible representations. Note that

χV⊗V = χ2
V = (9, 1, 0, 1, 1).
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Then, the inner product of this character with itself is

H(χV⊗V , χV⊗V ) =
1

24
(81 + 6 + 0 + 6 + 3) = 4.

Each of the resulting irreducible representations then must be repeated 1 or
2 times. However, if an irreducible representation were repeated twice, this is
impossible because χV⊗V is not double of any row in the character table. Using
the table, we find that

V ⊗ V ∼= U ⊕ V ′ ⊕ V ⊕W.

Example 31.2 (Symmetries of a Cube). Consider the action of S4 on the six
faces of a cube, and let the permutation representation of this be Z. We wish
to find χZ .

To do this, we compute the value of the character χZ at a representative of
each conjugacy class, by counting the number of faces fixed by each permutation.
First, χZ(e) = 6. Also,

χZ((12)) = 0,

χZ((123)) = 0,

χZ((1234)) = 2,

χZ((12)(34)) = 2.

Then, H(χZ , χZ) = 1
24 (36 + 4 · 6 + 4 · 3) = 3, so Z is the direct sum of three

irreducible representations. In particular,

Z ∼= U ⊕ V ′ ⊕W.

For intuition about this: U is the sum of all faces, while V ′ is the subspace of
Z spanned by differences of opposite faces. W is everything else.
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32 November 20

Today we finish character theory, discussing A4, S5, and A5. At the end of the
semester, we will move from representations in complex vector spaces to those
in real vector spaces.

32.1 Representations of the Alternating Group

First, we examine the conjugacy classes of A4. Each of the three even conjugacy
classes in S4 maps to A4; however, the class represented by (123) in S4 splits
into (123) and (124) in A4. Then, the conjugacy classes of A4 are e, (123),
(124), and (12)(34).

e (123) (124) (12)(34)
χU 1 1 1 1

We can then start drawing a character table for A4, as above. Clearly, the
trivial representation U is an irreducible representation of A4, so we add it as the
first row. In addition, any of the representations of S4 is also a representation of
A4 by restricting it to the elements of A4, although not necessarily irreducible.
We can then expand our table as below.

e (123) (124) (12)(34)
χU 1 1 1 1
χV 3 0 0 −1
χW1

1
χW2

1
χW 2 −1 −1 2

Observe that H(χV , χV ) = 1
12 (9 ·1 + 1 ·3) = 1, so it is irreducible. Similarly,

we can check that H(χW , χW ) = 1
12 (4 ·1+1 ·4+1 ·4+4 ·3) = 2. Then, W is the

sum of two distinct irreducible representations W1 ⊕W2, and if we check that
H(χW , χU ) = H(χW , χV ) = 0, this means that W1 and W2 are the remaining
two irreducible representations.

Now, we find W1 and W2. Since both are one-dimensional, the group ele-
ments are members of GL1

∼= C∗, which is an abelian group. This implies that
all elements in the commutator subgroup K = {e, (12)(34), (13)(24), (14)(23)}
of A4 must map to the identity in C∗. In particular, we can pull back the
representation homomorphism

A4 GL1
∼= C∗

A4/K ∼= Z/3Z

The only maps from A4/K to C∗ are those mapping the elements to third roots
of unity. These are therefore the last two irreducible characters of A4.
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Example 32.1 (Character Table of A4). The alternating group A4 on four
elements has four irreducible representations, with the following character table.

e (123) (124) (12)(34)
χU 1 1 1 1
χV 3 0 0 −1
χW1 1 ω ω2 1
χW2 1 ω2 ω 1
χW 2 −1 −1 2

Note. We have seen in our analysis of the representation theory of symmetric
groups that all characters of Sn have had integer values. In general, this is a
special property of symmetric groups and not the case for general finite groups.
The character table of A4 shows that in general, characters can be arbitrary
complex numbers.

Note. We showed earlier that χV ∗ = χV . As a corollary, a representation V
is isomorphic to its dual space if and only if its character is real. Also, in the
representation theory of A4, W ∗1

∼= W2.

Another way to see the symmetry between W1 and W2 in the above table
is to notice that there is an outer automorphism in A4 that takes (123) to
(124), which is determined by restricting conjugation by (34), which is an inner
automorphism in S4, to the elements of A4.

32.2 More on Projection Formulas

Previously, we observed that given a representation V of a finite group G, the
action of an element g ∈ G does not in general induce a homomorphism of
representations. However,

φ =
1

|G|
∑
g∈G

g ∈ Hom(V, V )

is a homomorphism of representations. It is an interesting question to ask what
other linear combinations of g ∈ G are homomorphisms of representations.

Proposition 32.1. Let α : G → C be any function on G, and let V be a
representation of G. Then, define a linear map φα,V : V → V by

φα,V =
∑
g∈G

α(g) · g.

Then, φα,V is a (G-linear) homomorphism of representations for all V , if and
only if α is a class function.

Proof. We prove the “if” direction of this proposition. Suppose that α is a class
function, and fix some representation V . Then, we wish to show that φα is
G-linear, i.e., for any h ∈ G and v ∈ V ,

hφα(v) = φα(hv).
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This can be shown with some algebra as follows:

φα(hv) =
∑
g∈G

α(g) · g(hv)

=
∑
g∈G

α(hgh−1) · (hgh−1)(hv)

=
∑
g∈G

α(g) · hgv

= h

∑
g∈G

α(g) · gv


= h(φα(v)).

Finally, we are ready to prove our big result about the number of irreducible
representations.

Proposition 32.2. If V1, . . . , Vk are the irreducible representations of G, then
the characters {χVi} span the space CC of class functions, i.e., k is equal to the
number of conjugacy classes.

Proof. Assume for the sake of contradiction that we have some class function
α not in the span of our k characters. We want to show that if α is a class
function and H(α, χVi) = 0 for all i, then α = 0.

Let V = Vi be any irreducible representation, and look at φα : V → V .
By Schur’s lemma, any endomorphism of an irreducible representation is simply
scalar multiplication by a constant, so

φα,V =
∑
g∈G

α(g) · g = λ · IdV .

In particular, note that

λ =
1

n
· tr(φα, v)

=
1

n

∑
g∈G

α(g) · χV (g)

=
1

n

∑
g∈G

α(g) · χV ∗(g)

=
|G|
n
·H(χV ∗ , α).

However, if V is an irreducible representation then its dual V ∗ is also irreducible,
so H(χV ∗ , α) = 0, and thus λ = 0.
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Now, consider an arbitrary representation V =
⊕

i V
⊕ai
i . Since V is the

direct sum of irreducible representations, the previous fact implies that φα,V = 0
for all representations V . In particular, if R is the regular representation then
φα,R = 0, and the result follows.

32.3 Representations of S5

In this section, we use the results we just proved to analyze the representations
of S5 and A5. We start off with the character table for S5, and we partially fill
it in below.

1 10 20 30 24 15 20
e (12) (123) (1234) (12345) (12)(34) (12)(345)

χU 1 1 1 1 1 1 1
χU ′ 1 −1 1 −1 1 1 −1
χV 4 2 1 0 −1 0 1

χV⊗U ′ = χV ′ 4 2 1 0 −1 0 1

Here, U is the trivial representation, U ′ is the alternating representation,
and V is the standard representation. To find more irreducible representations
of S5, we examine V ⊗ V , which is broken down as

V ⊗ V = Sym2 V ⊕
∧2

V.

In particular, we can compute the character of
∧2

V using the formula

χ∧2 V (g) =
χV (g)2 − χV (g2)

2
.

This tells us that χ∧2 V = (6, 0, 0, 0, 1, 2, 0), which is irreducible. Next, we look

at Sym2 V , whose character is related by the formula

χSym2 V (g) =
χV (g)2 + χV (g2)

2
.

This tells us that χSym2 V = (10, 4, 1, 0, 0, 2, 1). We can check that the inner
product of this character with itself is 3, so it is reducible and the sum of three
irreducible representations. Also, observe that

H(χSym2 V , χU ) = 1 =⇒ U ⊂ Sym2 V,

H(χSym2 V , χV ) = 1 =⇒ V ⊂ Sym2 V.

Thus, Sym2 V = U ⊕ V ⊕W , for some remaining representation W . Adding in
W and W ′ finally allows us to complete our character table.

Example 32.2 (Character Table of S5). The symmetric group S5 on five ele-
ments has seven irreducible representations, with the following character table.
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1 10 20 30 24 15 20
e (12) (123) (1234) (12345) (12)(34) (12)(345)

χU 1 1 1 1 1 1 1
χU ′ 1 −1 1 −1 1 1 −1
χV 4 2 1 0 −1 0 1

χV⊗U ′ = χV ′ 4 2 1 0 −1 0 1
χ∧2 V 6 0 0 0 1 2 0

χW 5 1 −1 −1 0 1 1
χW⊗U ′ = χW ′ 5 −1 −1 1 0 1 −1

Note. The general approach used here, of analyzing characters of representa-
tions in the tensor algebra of V , will always work in general. This is a conse-
quence of Problem 2.37 in Fulton-Harris, which shows that if V is any faithful
representation, then all irreducible representations appear in some tensor power
V ⊗n of V . It is not clear, however, how many tensor powers you will need to
take before all the irreducible representations show up.

Exercise 32.1. Use this character table to show that S5 is not the symmetry
group of any three-dimensional object in R3.
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33 November 22

Today we review the character tables of S5 and A5, then talk about induced
representations and the representation ring.

33.1 Representations of A5

The conjugacy classes of A5 are e, (123), (12)(34), (12345), and (12354). We
start by carrying over the irreducible representations of S5 into A5, giving us
the following table.

1 20 15 12 12
e (123) (12)(34) (12345) (12354)

χU 1 1 1 1 1
χV 4 1 0 −1 −1
χW 5 −1 1 0 0
χ∧2 V 6 0 −2 1 1

However, representations that are irreducible in S5 may not be irreducible
when we restrict them to A5. This tells us that

H(χV , χV ) =
1

60
(16 + 20 + 12 + 12) = 1,

H(χW , χW ) =
1

60
(25 + 20 + 15) = 1,

H(χ∧2 V , χ
∧2 V ) =

1

60
(36 + 60 + 12 + 12) = 2.

Thus, V and W are irreducible representations, and
∧2

V is the sum of the last
two irreducible representations. Note that there is an outer automorphism of
A5 that swaps the conjugacy classes (12345) and (12354), so the remaining two

irreducible representations must be of the form
∧2

V = Z⊕Z ′, conjugate under
this automorphism, with characters shown below.

1 20 15 12 12
e (123) (12)(34) (12345) (12354)

χU 1 1 1 1 1
χV 4 1 0 −1 −1
χW 5 −1 1 0 0
χZ 3 0 −1 α β
χZ′ 3 0 −1 β α
χ∧2 V 6 0 −2 1 1

We can use orthogonality to solve for the remaining values α and β, from
which we see that they are equal to (1±

√
5)/2. This completes the table.

Example 33.1 (Character Table of A5). The alternating group A5 on five
elements has five irreducible representations, with the following character table.
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1 20 15 12 12
e (123) (12)(34) (12345) (12354)

χU 1 1 1 1 1
χV 4 1 0 −1 −1
χW 5 −1 1 0 0

χZ 3 0 −1 (1 +
√

5)/2 (1−
√

5)/2

χZ′ 3 0 −1 (1−
√

5)/2 (1 +
√

5)/2

33.2 Induced Representations

Our motivation for this section is to describe representations of an arbitrary
group by looking at representations of its subgroups. Suppose we have a group
G and subgroup H ⊂ G. Then, we have a map from representations of G to
representations of H, by taking the restriction

ρ : G→ GL(V ) 7−→ ρ|H : H → GL(V ).

This is what we used to find the representations of the alternating group using
the symmetric group. However, we’d like to go the other way, to find a natural
map from representations of H to representations of G (smaller to larger).

Suppose that V is a representation of G, and suppose that W ⊂ V is a
subspace invariant under H (and thus an H-subrepresentation). Then, σW =
gW depends only on the coset σ = gH of H.

Definition 33.1 (Induced representation). If V is a representation of a finite
group G, H is a subgroup of G, and W ⊂ V is a subspace invariant under H,
then V is induced from W if

V =
⊕

σ∈G/H

σW.

Example 33.2 (Induced permutation representation). Let W be the trivial
representation ofH and V be the permutation representation ofG corresponding
to the action of G on G/H. That is,

V =
⊕

σ∈G/H

〈eσ〉.

Then, V is induced from W .

Proposition 33.1 (Induced representations exist and are unique). Consider
any finite group G and subgroup H ⊂ G. If W is a representation of H, then
there exists a unique representation V of G such that V is induced from W .

Proof. We will prove uniqueness, from which a construction will arise. Choose
one element gσ from each coset. if V is induced from W , then

V =
⊕

σ∈G/H

gσW.
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Given any g ∈ G, we need to determine how g acts on V . Then, let v ∈ V be
any vector. We can write

v =
∑

σ∈G/H

gσwσ.

This means by linearity that

g(v) =
∑

σ∈G/H

g(gσwσ) = (ggσ)(wσ).

However, observe that ggσ will simply be mapped to a different, unique coset
τ ∈ G/H, so we can write ggσ = gτhτ for some hτ ∈ H. It follows that

g(v) =
∑

σ∈G/H

gτ (hτwσ).

This is uniquely determined by hτ which is already defined, as well as gτ which
we know, so we have extended this to a unique action over all g ∈ G.
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34 November 25

This is the second-to-last lecture. Today we discuss the representation ring and
induced representations.

34.1 More on Projection Formulas (cont.)

Recall from Prop. 32.1 that for any class function α ∈ CC and representation
V , there exists an endomorphism of representations on V defined by

φα,V =
1

|G|
∑
g∈G

α(g) · g.

In this case, we are allowed to use any class function, so consider some irreducible
representation Vi, and let α = χV ∗i . Also, suppose that V = Vj is an irreducible
representation, and consider the map

φχV ∗
i
,Vj : Vj → Vj .

Furthermore, by Schur’s lemma, we know that this homomorphism of represen-
tations must be a scalar multiplication, λ ·IdVj . To find λ, we compute the trace
of the operator, which is given by

λ =
1

dimVj
tr(φχV ∗

i
,Vj

)

=
1

dimVj
· 1

|G|
∑
g∈G

χVi(g)χVj (g)

=
1

dimVj
· 1

|G|
H(χVi , χVj ).

Thus, this map is a nonzero scalar multiplication precisely when i = j, and
otherwise, it is the zero map. Then, it follows that for any irreducible represen-
tation Vi and representation V , the map φχV ∗

i
,V is a projection homomorphism

from V to the component V ⊕aii in its direct sum decomposition.
Philosophically, this tells us that given any explicit representation of a finite

group, we can find a projection onto any of its irreducible representations by
taking this sum of group elements weighted by the character of χV ∗i .

34.2 Representation Rings

Observe that the set S of representations of a finite group G (up to isomorphism)
almost has the structure of a ring under the direct sum and tensor product
operations. This satisfies all the ring axioms except the existence of additive
inverses, as we cannot take “negative sums” of irreducible representations. In
other words, with respect to ⊕, this is an commutative monoid, rather than a
group. We introduce a construction that allows us to form an abelian group
from any commutative monoid.
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Definition 34.1 (Grothendieck group). Given an commutative monoid S, we
can form a group with the following construction, in two steps.

1. Let G0 be the free abelian group generated by S. In other words,

G0 =

{
n∑
i=1

aiSi | si ∈ S, ai ∈ Z

}
.

2. Let H ⊂ G0 be a subgroup generated by elements of the form

{α+ β − γ | γ = α+ β},

where α, β, γ ∈ S. Then, we take the quotient group G = G0/H, and we
call G the Grothendieck group of S.

An intuition for this construction is that we are simply “adding in” the inverse
elements of each element g ∈ S, then providing a suitable relation for which the
group operation is defined.

Example 34.1. The Grothendieck group of N is Z.

Example 34.2. The Grothendieck group of Nk is Zk.

Definition 34.2 (Representation ring). Given a finite group G, the represen-
tation ring R(G) is defined to be the the Grothendieck group of the set of
representations of G. Because the representations of G are given by

V ∼=
k⊕
i=1

V ⊕aii , ai ∈ N,

the representation ring is isomorphic to Zk and given by

R(G) =

{
k⊕
i=1

V ⊕aii

}
, ai ∈ Z.

Elements of the representation ring are called virtual representations of V .

Proposition 34.1. The tensor product ⊗ gives R(G), originally an abelian
group, the additional structure of a commutative ring.

Proof. Recall from tensor product identities that

V ⊗ (U ⊕W ) = (V ⊗ U)⊕ (V ⊗W ).

This means that tensor products distribute over direct sums. We can then define
the product R(G)×R(G)→ R(G) given by(

k∑
i=1

aiVi

) k∑
j=1

bjVj

 =
∑

1≤i,j≤k

aibj(Vi ⊗ Vj).

This construction satisfies all the axioms of a commutative ring.

100



In these terms, the character function gives an inclusion map from R(G) to
class functions on G. This is shown in the diagram below.

R(G) CC

Zk Ck

In particular, the virtual representations R(G) form a lattice in the complex
space of all class functions on G. Within this lattice, the set of actual repre-
sentations of G forms a linear cone. The focus of representation theory is to
describe the lattice R(G), as well as characterize the cone of representations.

34.3 Induced Representations (cont.)

Recall that our basic setup is a finite group G with subgroup H ⊂ G, with
two operations. First, given a representation of the larger group G, we can
easily restrict this to a representation of H, which extends by linearity to a ring
homomorphism R(G)→ R(H).

Also, given a representation W of H, there exists a unique representation
V of G with subspace W ⊂ V invariant under H such that V =

⊕
σ∈G/H σW ,

called the induced representation. Hence, our two maps are:

• ResGH : R(G)→ R(H), ring homomorphism.

• IndGH : R(H)→ R(G), not a ring homomorphism.

The induced representation map is not a ring homomorphism, which can be
shown by a dimension-counting argument. Because dimV = |G/H| · dimW , it
is not true that

IndGH(W ⊗ U) = IndGH(W )⊗ IndGH(U).

However, we can show that induced representations satisfy a basic rule.

Proposition 34.2 (Homomorphisms of rings induce modules). Given two rings
A and B, suppose we have a ring homomorphism ϕ : A→ B. Then, ϕ gives B
the structure of an A module.

Proof. We can check the ring axioms, with the operation of A on B defined by

A×B → B,

(a, b) 7→ ϕ(a) · b.

The basic rule for induced representations is as follows. Observe that ResGH
gives R(H) the structure of a R(G)-module. Then, IndGH : R(H) → R(G) is a
module homomorphism between R(H) and R(G), both viewed as modules over
R(G) under the restriction map. In other words, if U is a representation of G
and W is a representation of H, then

U ⊗ IndGH(W ) = IndGH(ResGH(U)⊗W ).
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35 December 2

This is the last lecture. We wrap up induced representations, briefly discuss
real representations, then talk about future math courses after 55a!

35.1 More on Induced Representations

Suppose that U is a representation of G and W is a representation of H, where
H ⊂ G is a subgroup. Then,

HomH(W,ResU) = HomG(IndW,U).

In other words, this is saying that any H-linear map ϕ : W → U extends
uniquely to a G-linear map Ind(W )→ U . This is because

Ind(W ) =
⊕

σ∈G/H

gσW,

which means that we can extend ϕ to

gσW
(gσ)−1

−−−−→W
ϕ−→ U

gσ−→ U.

Note. The induced and restricted representations are not inverses of each other,
which can be seen by a dimension counting argument. In fact, it can be seen
that in general, Ind(ResU) = U⊕[G:H].

We can apply this statement as well to irreducible representations, which by
Schur’s lemma tells us that the number of times W occurs in Res(U) is equal to
the number of times Ind(W ) occurs in U . This has the following implication.

Proposition 35.1 (Frobenius reciprocity). The following two Hermitian inner
products on characters in G and H are equal:

HG(χIndGHW , χU ) = HH(χW , χResGH U ).

35.2 Real Representations

By the algebraic closure of C, the representation theory of finite groups over C
is very nice, as we have both complete reducibility and Schur’s lemma. When
we look at representations of finite groups over R, however, Schur’s lemma does
not hold.

Example 35.1 (Schur’s lemma fails). Consider the action of Z/nZ on R2 by
rotation about the origin by an angle of 2πα/n. This is an irreducible represen-
tation of Z/nZ on R2. However,

HomZ/n(R2,R2) 6= R.
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Instead, we would like to use our knowledge of complex representations to
analyze real representations. Let V be a real vector space. Then, we can turn
the scalars from real numbers to complex numbers by treating C as a two-
dimensional vector space over R, so the complexification V C = V ⊗R C is a
representation of G over C. In particular, we have the following diagram.

G→ Aut(V ) ∼= GLn(R) ↪−→ GLn(C) ∼= Aut(V C).

This gives us a map from representations of G on real vector spaces, to repre-
sentations of G on complex vector spaces.

Definition 35.1 (Real representation). We call a representation of G on a
complex vector space V real if it arises in this fashion, as the complexification
of some real representation.

Our question is then: given a complex representation V of G, when is it
real? Immediately, we can see that a necessary condition is that χV is real, as
all eigenvalues of operators in GLn(R) are real numbers. We explore this.

It turns out that the converse is not true; having χV be real is not a sufficient
condition. Suppose that V is any complex representation of G with χV real.
Then, χV = χV = χV ∗ , meaning that V ∼= V ∗ as representations of G.

In the special case that V is irreducible, there exists a unique G-linear map
ϕ : V → V ∗, meaning that there is a bilinear form B ∈ V ∗⊗V ∗ invariant under
the action of G. In equation form,

(V ∗ ⊗ V ∗)G ←→ HomG(V, V ∗).

Now, notice that V ∗ ⊗ V ∗ ∼= Sym2 V ∗ ⊕
∧2

V ∗. Since both Sym2 V ∗ and
∧2

V ∗

are natural constructions from V ∗, they must each be invariant under the action
of G (automorphisms). This means that we can factor B into symmetric and
skew-symmetric parts, each of which is invariant under G. However, recall by
Schur’s lemma that B is unique up to scalar multiplication. This means that B
is either wholly symmetric or skew-symmetric.

To summarize, given an irreducible representation of G on a complex vector
space V , there are 3 possibilities:

• V is complex, χV is not real, and V 6∼= V ∗.

• V is real, χV is real, and there exists a symmetric bilinear form B invariant
under G. Also, V is the complexification V0⊗RC of some real vector space
V0 with a G-action.

• V is quaternionic, χV is real, and there exists a skew-symmetric bilinear
form B that is invariant under G.

This demonstrates a common technique for dealing with real vector spaces,
by taking their complexification (which may have nicer properties) and attempt-
ing to deduce facts about the original real objects.
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35.3 What’s Next?

That concludes the content of Math 55a! Joe draws for us the following map of
math courses at Harvard.

212

112, 114 136 230

55ab ��131 132 231 137 232

��122 123 221

��113 129 223

213 229

diff geo

real analysis

topology

algebra

complex analysis

NT

alg geo

alg NT

analytic NT

In general, any topic covered by Math 55 completely subsumes any introduc-
tory undergraduate course on that topic. The crossed-out items in the diagram
above represent courses that will be covered by 55.
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