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A B S T R A C T

Datalog is a declarative, domain-specific programming language grounded
in principles of logic. At its essence, it expresses computation on relational
data in a manner that is both understandable by humans and easy for
machines to reason about.

Although it was originally introduced in the 1980s as a subset of Prolog,
Datalog has seen a resurgence in a wide variety of modern software
applications such as databases, rule engines for security, static analysis
frameworks, and authorization. In these cases, the basic semantics of the
language are well-established, but its precise syntax and evaluation as
a domain-specific language are usually tailored to the application. This
opens up exciting possibilities for language design to impact the way
people express computational ideas.

To explore the strengths and limitations of Datalog, we design and
implement two language systems with Datalog at their core, addressing
distinct computer science domains. First, we create a high-performance
Datalog implementation in Rust, seamlessly integrate it with the host
language, and demonstrate that cross-language function calls are possible.
Second, we explore the seldom-examined connection between Datalog and
data analysis by creating a reactive web-based notebook programming en-
vironment, offering a tangible, reproducible, and easily shareable platform
for exploration of datasets.

In both cases, we construct the designed system—either as a prototype or
a production-ready library—and present case studies on industry or other
real-world usage. Additionally, we benchmark and holistically evaluate
the systems to demonstrate how our design choices in embedding Datalog
can enhance language interface usability and expressiveness, while also
discussing drawbacks and limitations.
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What is software for?
People turn to software to learn,

to create, and to communicate.

— Bret Victor [28]
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1
I N T R O D U C T I O N

Why develop programming languages? Computers and software are all
around us; as of 2021, over 900 Arm microprocessors are manufactured
every second [20]. People rely on computers in almost every aspect of
their daily lives: learning, communication, creativity, planning, collabo-
ration, and so on. This is only possible if programmers are able to write
useful, efficient, and reliable software. To talk to computers, i.e., to express
computational ideas, we rely on programming languages.

The difficulty in creating good programming languages can be compared
to that of any good tool. Languages need to be clear, expressive, and easy-
to-use for humans to be productive. We can describe such abstractions as
elegant, composable, simple, and robust. However, to be useful, languages
also need to factor in considerations of the machine: it should be possible
to execute code efficiently and reason about it through tooling.

We’re lucky in that computational ideas don’t just come from thin air.
They’re timeless, rooted in mathematics. Algorithms invented in 500 BCE
work exactly the same way today. So by grounding language design in
logic, we can develop sound idioms for interacting with computation.

Different languages draw on various bodies of ideas and work. But
the core computational ideas don’t change; after all, there are only so
many different ways you can tell a person (or machine) to calculate or do
something! A programmer or scientist prototyping a simple application
who just wants to “get some work done” might write a short, procedural
Python script. An engineer building a reliable system for a car or space-
ship might use languages that require more planning but offer guarantees
around safety and performance. A developer working on geographic in-
formation systems might write SQL queries to refine data. These examples
all express different slices of ways we can talk to computers, with benefits
and tradeoffs to each.

The topic of this thesis is on language design. We explore one compelling
avenue towards enriching programming languages with first-class support
for querying and inferring results from relational data, and we apply this
idea to important problems in multiple disciplines of computer science. By
exploring, prototyping, and evaluating our efforts, we can distill ideas that
make software easier to write in the future. More fundamentally, advances
in language design build toward a unified understanding of how people
expressively communicate with computers.
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2 introduction

1.1 datalog

Datalog is a declarative logic programming language. Here, declarativeDatalog historically
originated as a

subset of a language
called Prolog, but

this doesn’t capture
how it is used today.

means that the programmer expresses outcomes rather than the particular
steps to get there, and logic programming is a paradigm that is based on
formal logic. Datalog was first introduced in the 1980s, but it has seen a
resurgence in recent years due to applications that benefit from it.

As far as languages go, Datalog is very simple. We will introduce the
language in Part I. The basic idea is to specify a form of logical deduction
called rules, which can possibly refer to each other in a recursive way, to
write programs that produce responses to a query. It represents a useful
fragment of programming that easily allows people to express queries
over structured, relational or graphical data. However, the language itself
does not have any standardized syntax and is therefore typically adjusted
to its particular problem domain.

One reason why Datalog is interesting is because it is relatively easy to
implement, while allowing programmers to very concisely and logically
express complex relational analyses, effectively equivalent to SQL with
recursive queries. Structured data is everywhere, and the language in its
simplicity makes it possible to quickly prototype and add support for such
queries without having to implement a complex query planner frontend
for alternatives like SQL. It’s also more composable in longer programs,
and there’s substantial literature on efficient evaluation methods.

However, past Datalog implementations have primarily focused on ei-
ther standalone language systems—interpreters, compilers, or databases—
which need to be run separately from application code, or on basic engines
that only provide the bare essentials and force the programmer to put the
cogs together themselves. This thesis focuses on ways that Datalog can be
integrated directly into languages to solve problems.

1.2 structure

This document is divided into three primary parts, followed by a conclu-
sion. Part I covers background material on Datalog and a brief survey of
related work. The next two parts discuss language design for different
Datalog applications.

Part II discusses the integration of Datalog as a performant embed-
ded rule engine within Rust, a general-purpose systems programming
language. We implement this in a system called Crepe. The unique con-
tribution of this work is that it is the first embedding of Datalog as a
procedural macro, allowing for seamless calling of host language functions
within the logic programming rules and greatly increasing the speed,
ease-of-use, and expressiveness of the language for integrated queries. We
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discuss our design and implementation, followed by how Crepe used in
the wild by various companies and public open-source projects, and we
finish with microbenchmarks and evaluation.

Part III looks at Datalog in the lens of an important but more experi-
mental application: exploratory data analysis. We design and implement
Percival, a language and associated reactive notebook environment for
data analysis and visualization. In doing so, we make syntactic changes
and add support for extra features like aggregations. We also construct
a new, compiled Datalog engine that runs as sandboxed JavaScript code
within the web browser, allowing people to share notebooks across the
web and run them without installing any additional software.

Finally, we synthesize all of the work discussed and make concluding
remarks in Part IV.





Part I

R E V I E W A N D B R I E F S U RV E Y





2
D ATA L O G S Y N TA X A N D S E M A N T I C S

This chapter gives a brief primer into the syntax and semantics of Datalog,
as well as common extensions to the basic language. We aim to give a “feel”
for the topic by presenting the key ideas, rather than writing a textbook.
See [7] for a fuller exposition that complements this chapter.

2.1 horn clauses

The most basic defining element of Datalog as a language is the concept
of a Horn clause. Horn clauses are logical formulas of the form

p∧ q∧ · · ·∧ t =⇒ u.

In other words, some logical conjunction of literals p,q, . . . , t implies an-
other literal u. Horn clauses can be used to do deductive logical inference.
For example, suppose that A(x) is the statement that “x is an animal,”
L(x,n) is the statement that “x has n legs,” and F(x) is the statement that
“x is a frog.” Then, “all frogs are animals” could be written as

∀x : F(x) =⇒ A(x).

Similarly, a statement saying that “all animals with four legs are frogs”
would be written as

∀x : A(x)∧ L(x, 4) =⇒ F(x).

For logic programming, we typically write Horn clauses using a slightly
different notation, based on Prolog. Each Horn clause is called a rule,
which is implicitly universally quantified over all variables in the rule. The In other words, the

“∀x” part of the
formula is assumed.

rule is written lhs :- rhs, where the left-hand side consists of a single
literal, and the right-hand side has a comma-separated list of literals. For
example, the two formulas above could be written in Prolog rules as:

is_animal(X) :- is_frog(X).

is_frog(X) :- is_animal(X), has_legs(X, 4).

You’ll notice that our examples so far have been specified to be in Prolog.
Why not just say it is Datalog? This is because as a language, Datalog is a
subset of Prolog semantically, but its syntax is not well-specified. Different
variants of Datalog all have slightly different takes on the syntactical

7



8 datalog syntax and semantics

elements, and there is no one standard. For this chapter, we will give our
examples of logic programs in generic Prolog-like syntax until we deal
with more specific language systems in later chapters.

With that out of the way, Datalog programs at their core just consist
of a list of rules, which are Horn clauses. Each clause connects one or
more relations, which are mentioned in the clause’s literals. There are no
builtin mechanisms for input, output, or other side effects. For example,
in the program above, the two rules operate on three relations: is_frog,
is_animal, and has_legs.

Some of these relations can be populated as inputs from a database of
facts. These are called the extensional relations. A Datalog engine can then
run the program, deducing all facts that can be inferred from the input
relations, since they appear on the left-hand side of rules. These are called
intensional relations.

What makes Datalog more interesting is that queries are explicitly
allowed to be recursive and possibly mutually recursive, meaning that they
can depend on each other in cycles. This is a key feature. For example, the
following Datalog program finds all paths within a directed graph.

path(X, Y) :- edge(X, Y).

path(X, Y) :- path(X, Z), edge(Z, Y).

In this example, path appears on both the left-hand side and the right-
hand side of the second rule. This is essential in order for this query to be
expressible, since paths in a directed graph can have arbitrary length.

Some logic programming engines generate the total, maximum set of
all relations that can be deduced from a database of inputs. Other engines
give the user an application programming interface that allows them to
query for whether a given relation can be deduced or not. A natural
extension of this is to allow the user to provide their own “right-hand side”
of rules, whose results are then matched and returned on-demand, as is
common in database queries based on Datalog.

2.2 fixed point semantics

What does it really mean to execute a Datalog program? Since they operate
on logical predicates, a natural interpretation is that Datalog engines tell
you whether a fact can be inferred from its inputs, and if so, which facts
those are. Intuitively this makes sense, as the engine is able to automate the
“deductive reasoning” part of applying Horn clauses to draw conclusions
from relational data, via logic as an interface.

The semantics of Datalog are specified in [4] in detail using three equiv-
alent interpretations, roughly described as model theory, fixed point, and
proof theory. The model theory and proof theory interpretations, while
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interesting, are not particularly relevant to the rest of this project, so we
will skip it but refer the reader to the original source, if they are interested.
Instead we discuss its semantics in the fixed point lens.

We will use slightly simpler notation than that of the referenced paper.
Let F be the possibly infinite set of all possible facts. The execution of
a Datalog program P forms some subset of F containing facts that are
derived by the Datalog rules, either directly or recursively. It outputs some
member of P(F), the power set of F.

Define a function fP : P(F) → P(F) that performs one step of deductive
inference. In other words, if S ⊂ F is the set of facts that have been
derived thus far, then fP(S) is a superset of S that contains all facts that
are on the left-hand side of a rule (i.e., Horn clause) in the program P

currently satisfied by facts in S. Equivalently, fP evaluates one step of all
the program’s rules at the same time, by instantiating the rules with values
for all of their universally quantified variables and deriving new facts
using the resulting Horn clauses.

Let S0 ⊂ F be the initial set of facts provided as external input to the
Datalog program, perhaps from the extensional database (EDB). Then
consider the sequence obtained by repeatedly evaluating one step of
inference:

S0 ⊂ fP(S0) ⊂ fP(fP(S0)) ⊂ fP(fP(fP(S0))) ⊂ · · · ,

which forms an ascending chain of sets in P(F). At some point this chain
will stabilize at a fixed point, and this least fixed point that contains S0
defines the output of the Datalog program.

In plain terms, the program is complete when evaluating a step of
deductive inference does not derive any new facts. If a program starts with
only ground facts, and there are no functors that operate on the primitive
data types, then any produced facts can only involve data from constants
present at the start of the program. This implies that F is finite, so the
ascending chain must stabilize, and any Datalog engine that continues
making progress towards producing facts is guaranteed to terminate.

However, the termination guarantee is not that helpful in practice, as
the termination might take polynomial time, where the degree of the
polynomial depends on the arity of relations defined in the program. For
example, a relation with 26 variables rel(A,B, . . . ,Z) could take on up to
N26 values, where N is the number of distinct constants defined at the
start of the program. So although mathematically notable, the guaranteed
termination claim does not tell programmers that their code will finish
executing in any reasonable amount of time. In practice, no Datalog
implementation has that property.
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Figure 2.1: Dependency graph in the first Datalog program.

2.3 stratification

One important property of Datalog programs is that they can be stratified,
or broken up into one or more parts that have no cyclic dependencies. For
example, consider this program.

a(X, banana) :- b(X).

b(X) :- a(_, X).

c(X, X) :- b(X), a(X, banana).

d(Z) :- c(X, Z), b(Z).

(Here, as a matter of notation, the _ syntax just means any variable that
can be ignored and could be replaced with a unique name, and banana is
a symbol constant, similar to a string in other languages.)

Notice that in this program, relations a and b can be computed first,
and all of them could be fully deduced without needing to look at relation
c at all. Similarly, all of relation c could be fully computed before looking
at any rules that produce relation d. We say that this program can be
partitioned into three strata: {a,b}, {c}, and {d}.

If we draw the dependencies between relations in the above program
visually, we get the directed graph shown in Fig. 2.1. A directed edge exists
from a relation u to a relation v if and only if v appears on the right-hand
side of a rule that produces u. The strata {a,b}, {c}, and {d} are precisely
the strongly-connected components of this graph, and the dependencies
can be executed in reverse topological order.

For another illustrative example, consider the trivial but representative
Datalog program shown below.
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Figure 2.2: Dependency graph in the second Datalog program.

a(X) :- b(X). b(X) :- c(X). c(X) :- a(X).

d(X) :- a(X). d(X) :- b(X). d(X) :- f(X).

e(X) :- d(X). f(X) :- e(X). f(X) :- a(X).

This program has 6 relations, with a graph of direct dependencies illus-
trated in Fig. 2.2. Here, we can see that there are directed cycles between
each of {a,b, c} and {d, e, f}, so the program can be broken into two strata.
The strata match the graph’s strongly connected components.

Stratification lets us easily split Datalog programs into multiple sections
that can be evaluated independently. This has a couple of advantages:

• Evaluating two sections, one after the other, may be more performant
than evaluating both sections in the same pass.

• Stratification allows us to support limited forms of negation within
Datalog.

What do we mean by negation? A clause in a rule can be negated in Datalog,
which will only match if that literal cannot be derived by the program. In Prolog terms,

negation is satisfied
when the program

“fails” to derive it.

The following shows a simple example, where ! indicates negation.

fruit(mango).

fruit(banana).

fruit(tomato).

vegetable(tomato).

vegetable(cabbage).

output(X) :- fruit(X), !vegetable(X).

This program would derive both output(mango) and output(banana), but
it will not derive output(tomato).
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Negation can be allowed only when the program is stratified, meaning
that if the negation of a relation x appears on the right-hand side of a rule
producing y, then x and y must belong to different strata. This allows an
engine to hypothetically evaluate it by, for example, fully computing x in
an earlier stratum before beginning to evaluate rules with a negated literal,
which are non-ambiguous. If negation is not stratified, then a problematic
program under the discussed semantics would be be

paradox() :- !paradox().

If paradox() is derived by the program, then it should not be derived, and
vice versa. By stratifying negation we avoid this problem.

2.4 other extensions

Datalog can be extended in various ways that change its semantics. As
mentioned previously, every Datalog engine in the wild tends to have its
own tailored syntax, features, and therefore semantics. Sometimes features
can be quite complex, such as incremental computing, but other times
they are simple additions. Not all features are compatible with each other,
which makes them interesting to explore.

One difference is in the primitive data types. Prolog originally sup-
ports integers, floating-point numbers, atoms (character sequences), and
Booleans, but in practice each engine has a different set of supported
data types. Any data type can be theoretically supported as long as it
is comparable so that rules can perform unification. There are tradeoffs
though. Some engines support large data types, which would benefit from
reference counting to avoid memory copies, while other engines do not
reference count constants for performance reasons.

With data naturally follows the need to perform computations and
operations on that data. Adding support for a language of expressions to
Datalog feels natural but also greatly changes its semantics, as it is no
longer guaranteed to terminate. For example, the following program can
derive an infinite number of literals: foo(1), foo(2), foo(3), and so on.

foo(1).

foo(X + 1) :- foo(X).

Arithmetic and string operations still tend to be useful though, as
not having them affects the usability of the language. Souffle [10] and
Formulog [2], discussed in the next chapter, both support user-defined data
types and have a library of of built-in operations, for example. Formulog
also allows the user to write their own functions within the language in
some fragment of ML-like functional programming.
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Besides expressions, another extension is in adding support for aggrega-
tion. Common aggregation operations like sum, min, max, and mean share
the common behavior of taking a large slice of data, possibly from a sub-
query, and computing a single statistic from that data. The Souffle dialect
supports aggregation, for example. We will discuss aggregation more in
Section 8.2.

Similar to negation, here we will only consider the case where aggrega-
tions are stratified. It is possible to handle recursive aggregation operations
in some limited scenarios, as described in [24], but this requires using
special techniques and assumptions like monotonicity over a lattice to
avoid problems analogous to the paradox() example above.





3
D ATA L O G E VA L UAT I O N M E T H O D S

In the previous chapter we discussed Datalog’s syntax and formal interpre-
tations of its semantics. From this we can see that Datalog as a language is
very small and easy to understand. However, inside this simple shell is
a surprising amount of complexity when it comes to actually evaluating
Datalog. Since Datalog supports relational queries with arbitrary recursion,
Datalog is able to express a very large number of queries, some of which
are difficult to evaluate efficiently.

In a way, Datalog embodies the essence of “relational joins” through a
syntax that reminisces equally of logic programming with Horn clauses,
or of pattern-matching queries inside a graph database. Depending on
extensions added to the language, evaluation methods change as well.

Datalog engines can be standalone, or Datalog can be used as the
frontend query language for a database management system. In either
case, the evaluation engine needs a way to access the extensional database
of base facts and a place to put outputs. Sometimes, the language is
implemented in a standalone way with custom, optimized data structures
that operate over data files kept in memory.

Within each of these varieties of Datalog runtime, there are different
algorithms that can evaluate Datalog with the effective semantics described
earlier in Section 2.2. We start by discussing these broad categories of
evaluation algorithms.

3.1 top-down and bottom-up

At a high level, the difference between top-down and bottom-up reasoning
is between working logically backward and forward. A bottom-up method
starts from the set of facts that are known at the beginning, then repeatedly
applies deductive rules to expand that set of facts. In contrast, a top-down
evaluation method starts from the desired goal themselves and tries to
reason backward from the goal, applying rules until it either finds a chain
of reasoning that implies that goal, or otherwise fails to find this after
exhaustively searching. This involves repeatedly backtracking, rather than
gradually growing a set of facts.

By tracing the flow of evaluation, we can check that both of these
methods can be implemented to match the semantics of Section 2.2. (A full
proof is omitted because the argument is straightforward but notationally
cumbersome.) The sketch is as follows. First, either method is able to
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16 datalog evaluation methods

prove any fact in the fixed point, since any of those facts must be in some
set fP(fP(· · · fP(S0) · · · )) and therefore can be deduced by some inference
chain, applying Horn clauses in the program. Second, if a fact is not in the
fixed point, then there is no chain of rule applications that can deduce that
fact, so neither top-down nor bottom-up method can produce it.

Prolog’s semantics are defined with depth-first search, a top-down
evaluation method, starting from a programmer query. The interpreter
executes by repeatedly “unifying” terms with other terms, turning free
variables into bound ones. Because Prolog rules can have side-effects like
writing to files or taking input, the top-down depth-first search method is
an essential part of the language.

On the other hand, Datalog programs do not have side effects, so the
engine is free to use any transformations or methods as desired. Most
engines evaluate Datalog programs using a bottom-up method. These
methods are usually just as effective or better in memory consumption for
most programs because in top-down evaluation, an engine must memoize
previously-failed evaluations for any nontrivial program. (An example
would be graph reachability, where a top-down method would have ex-
ponential runtime.) Furthermore, bottom0up methods have advantages
for temporal and memory cache locality on CPUs because the same rule
can be applied in batches all at once, rather than jumping between rules
as needed in an analogous top-down method.

Another reason to prefer bottom-up engines is the existence of program
transformation rules that turn top-down programs into equivalent bottom-
up programs for Datalog. These are called “magic set” transformations,
and they allow a bottom-up program to avoid computing unnecessary
facts that are not relevant to deducing the final goal, just as a top-down
method would avoid these facts [27]. Several Datalog engines provide
implementations in various forms of the magic set transformation.

The simplest bottom-up evaluation method is called naive evaluation. It
proceeds by closely mimicking Datalog’s fix point semantics. First, the
engine is started with the set of initial facts S0. On each iteration, the
program takes its current database of facts and computes all new facts that
can be produced by one step of deductive inference, by iterating over all of
the rules and exhaustively unifying them. If any new facts were produced,
it then merges those with the previous set and repeats the process with
another iteration; otherwise, it terminates.

3.2 semi-naive evaluation

Suppose, as in the last section, that we are doing bottom-up evaluation of
a Datalog program. Naive evaluation is fine, but it can often be inefficient.
For example in the graph walking program:
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path(X, Y) :- edge(X, Y).

path(X, Y) :- path(X, Z), edge(Z, Y).

When running this in naive evaluation, the set of facts after the k-th
iteration of rule evaluation would be the pairs of nodes of distance at most
k in the graph. Suppose that there are m edges connecting n nodes. Then
the maximum number of iterations is n− 1, and each naive evaluation
iteration requires O(m) time to iterate through potentially all of the edges,
so this algorithm has runtime O(n2m).

However, the O(n2m) time complexity of the naive algorithm is very
bad, and we can trivially do a lot better for directed graph reachability by
simply running n depth-first search calls in O(nm) time. (Using Tarjan’s
strongly-connected components algorithm, this specific problem can actu-
ally be solved in linear O(n+m) time, but that requires more advanced
structural observations specific to the problem. The point here is that even
a simple depth-first search outperforms naive evaluation.) What makes
naive evaluation so slow is that we need to repeatedly process each of the
previous facts on each iteration of rule inference.

Semi-naive evaluation solves this inefficiency by only attempting to
evaluate rules where at least one term on the right-hand side of the rule
was generated (i.e., is new) since the previous iteration. In the case of
this graph walk program, on each semi-naive iteration we would only
iterate over new paths for the path(X, Z) term, rather than all paths for a
naive evaluation iteration. This brings the time complexity down for this
example down to O(nm).

More generally, semi-naive evaluation can be implemented in an arbi-
trary stratified program. If a rule has terms α1, . . . ,αk that come from the
current evaluation stratum, then semi-naive evaluation iterates over, for
each i ∈ 1, 2, . . . ,k, the new facts generated for αi in the past iteration and
all facts for terms numbered αj where j ̸= i. This is usually more efficient
because it reduces the amount of duplicated work that’s done in naive
evaluation of Datalog programs.

3.3 source code transformations

Although we’ve been talking about standalone engines for Datalog so
far that deal with primarily in-memory database systems, some Datalog
programs are run in other environments. One example is in database
systems. Large-scale and distributed databases typically have a query
frontend that compiles queries in SQL, Datalog, Cypher, or another query
language down into its lower-level intermediate representation, which is
then evaluated by the database’s storage and executor backend.
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Since Datalog is a relational programming language, it can be viewed in
a similar way. Datalog programs can be compiled into relational algebra
or other specifications before being executed. This is the approach taken
several database engines that offer Datalog as one of their supported
query languages, such as XTDB and Datomic, as well as tools like Logica
and BigDatalog, which both compile Datalog to various query languages
running on massive datasets via cloud or cluster-based systems. We will
discuss these systems and other related work in Section 4.2.

Finally, closely related to the idea of source code translation is staging.
We can compile a Datalog program into an efficient executable that runs
only that program, which lets us take advantage of low-level compiler
optimizations and reduces overhead from parsing and dynamic dispatch.
Souffle purports to do this through Futamura projections, treating their
Datalog interpreter as an object to be specialized on a particular input
Datalog program, and the results are positive. This can effectively be
viewed as source-to-source translation of Datalog into C++ code. The
compiled Datalog systems that we implement and discuss in Parts II
and III will use source translation methods with semi-naive evaluation.



4
R E L AT E D W O R K

Datalog has proven to be a versatile and flexible language with numerous
real-world applications, spanning a wide range of domains from program
analysis to big data analytics. In this chapter, we delve into some of the
applications of Datalog that are embedded or integrated within larger
systems. Although the applications are far too extensive to enumerate
comprehensively, we concentrate on some notable examples from various
domains, with particular emphasis on those relevant to this thesis.

4.1 static analysis

Datalog has found significant application in the field of static analysis,
which involves analyzing source code without executing it. Souffle [10]
is a Datalog-based program analysis system that supports efficient and
scalable analysis of large codebases. Souffle’s distinguishing feature is
its high-performance evaluation mechanisms using concurrent B-trees,
which work with semi-naive evaluation and a mature compiler to C++
code. Typically, program synthesis in Souffle proceeds by the programmer
using facts to represent a codebase, which is then processed by the Datalog
engine, allowing for fast and expressive analysis of code.

Formulog [2] is another Datalog-based system that combines logic pro-
gramming with Satisfiability Modulo Theories (SMT) solvers and a first-
order subset of ML (a functional programming language) to enhance the
performance of static analysis. It leverages the strengths of both SMT
solvers and Datalog by embedding satisfiability calls and model checking
within rules, thereby allowing the system to reason about more complex
program properties. Formulog has been used to implement systems like
a dependent type checker, a symbolic execution engine, and standard
points-to and escape analyses.

CodeQL [6] is a commercial and open-source structural query language
for code that is used to find security vulnerabilities. It is semantically
based on Datalog and is widely used in industry. CodeQL allows users
to write Datalog-based queries that analyze code for security vulnera-
bilities, including SQL injection, cross-site scripting, and buffer overflow
vulnerabilities.

Ascent [19] is an embedded Datalog engine that is very similar in design
to Crepe, the system we create and evaluate in Part II of this thesis. Work
on the Ascent project began more than 12 months after Crepe was first
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published as a library and widely distributed in the open-source Rust
community, being downloaded thousands of times and used by several
projects. The authors of Ascent have seen Crepe, but they failed to cite it
as prior work in their conference publication.

4.2 database query grammars

Datalog has been used as a database query language in several systems,
where its simplicity and ability to express recursive logic allow users
to query data effectively. Datalog queries are often simpler and more
intuitive than SQL queries in these databases, and they can be used to
express complex queries that are difficult to express using SQL.

Datomic is a distributed graph database system that allows for flexible
schema changes and provides ACID transactions. It is based on the princi-
ples of Datalog, but extends it to handle transactions. A dialect of Datalog
is used to express the queries, and Datomic’s query engine is optimized for
efficient execution on auto-scaling distributed clusters. It also provides a
rich set of query primitives, including aggregations, filtering, sorting, and
joins. Datomic is used in various domains, including finance, healthcare,
and e-commerce.

DataScript is an in-memory embedded database with a Datalog query
engine. It is designed for Clojure and ClojureScript applications. DataScript
uses a syntax compatible with Datomic and therefore supports recursive
queries, joins, and aggregations, and provides a set of built-in functions for
manipulating data. It also allows for easy integration with other Clojure
libraries and frameworks. Other projects like Datalog UI have been drawn
inspiration from DataScript’s use of Datalog as an embedded application
database.

Logica [23] is a Datalog compiler that translates Datalog queries into
StandardSQL for execution on Google BigQuery. This allows the use
of Datalog in the context of very large datasets. Logica was developed
by Google, and it allows programmers to write queries that are more
composable, reusable, and understandable than if they had been developed
directly in SQL.

BigDatalog [22] is a Datalog-based big data analytics system that runs
on Apache Spark. It supports the execution of complex Datalog queries
on large-scale data. BigDatalog provides a high-level query language that
allows users to write Datalog queries that are automatically translated into
Spark code for execution. Other distributed Datalog implementations that
are comparable include SociaLite [21] and Myria [29].

https://www.datomic.com/
https://github.com/tonsky/datascript
https://datalogui.dev/
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4.3 authentication and access control

Datalog has also been employed for authorization and role management
in enterprise software systems. One such example is Oso Cloud, a cloud-
based authorization system that leverages Datalog to define access policies
and permissions. By utilizing Datalog, Oso Cloud can create expressive
and flexible rules for managing access rights, enabling a high degree of
customization and adaptability to various use cases.

DDlog [18], a dialect of Datalog developed at VMware, supports incre-
mental computation based on differential dataflow. This approach has
been employed for network control applications, encompassing packet pro-
cessing and software-defined networking (see Nerpa). The use of DDlog
enables efficient and responsive computation of network state changes,
making it suitable for applications that demand real-time updates and
rapid adaptation to evolving conditions.

4.4 ai knowledge engines

Datalog has been utilized as a knowledge representation language in
AI knowledge engines, demonstrating its efficacy in representing and
reasoning about complex data relationships. LogicBlox [1] is a commer-
cial knowledge graph system that employs Datalog to facilitate complex
reasoning and inferencing tasks. By adopting Datalog as its underlying
language, LogicBlox can manage intricate dependencies and interconnec-
tions between entities in the knowledge graph, enabling powerful queries
and analysis. RelationalAI is the successor to LogicBlox, also used as a
knowledge graph system that uses Datalog to support reasoning tasks.

https://github.com/vmware/nerpa
https://relational.ai/
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S E A M L E S S LY C O M P I L I N G L O G I C P R O G R A M S I N R U S T

The applications of Datalog described in the last section were mainly
standalone systems that could communicate with other software over the
network as a client-server protocol, or as a subprocess running on database
files. However, there’s equally a lot of creative potential in using Datalog
as a relational core that can be embedded in larger programs.

This is difficult to do in most high-performance Datalog systems. For
example, in Souffle, to embed Datalog in a larger program, you would
need to pre-compile the Souffle code into a native executable, package
that executable with your program for all architectures, create a temporary
file with your input, spawn Souffle as a subprocess, and read the output
from another file. This procedure is tedious and error-prone, and there
are many places for hard-to-detect failures to arise, such as if the runtime
ran out of memory, was killed by the operating system, or froze due to a
deadlock. It also creates a great deal of operational dependency between
different software components.

For Datalog to be effectively used as the logical engine within larger
systems software, such as compilers or control mechanisms, it needs to be
possible to execute relational code from within larger programs. In other
words, the Datalog engine should run as a data structure within a library,
rather than a standalone engine.

Libraries have their own benefits and drawbacks compared to standalone
software though. The principal advantages are that they are simpler to use
and integrate with inside the host language, and they can provide much
more expressive cross-language interaction compared to an interprocess
communication or network-based interface. For example, library APIs can
take first-class function callbacks as arguments. They also tend to have
less overhead in serializing data structures between languages.

The downsides unfortunately are that libraries typically are restrained
in syntax since they have to parse within the host language, which can
be awkward or clumsy. They also are not usable from different languages
other than the one that they are written for, and since there is less process-
ing that can be done at compilation time, it may lead to slower code.

Is it possible to use Datalog as a library without sacrificing performance
or expressiveness? In this part I introduce Crepe, a high-performance
compiled Datalog engine embedded in Rust as a procedural macro that
integrates seamlessly with Rust code. This is the first library (though others
have since followed) that embeds Datalog within a general-purpose host
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language while offering cross-language function calls. I demonstrate that
this embedded language is efficient and expressive, and I show real-world
examples of deductive programs using Crepe written by companies in
production, and by research projects.

5.1 embedded language systems

Let’s give concrete examples of how embedding languages as a library
differs from other mechanisms. The key difference is in the application
interface. An algorithm does not have knowledge of the interface by
which it is presented to the world, but this interface can greatly affect its
performance, usability, and expressiveness when presented to users.

We can see fitting examples of this tradeoff in databases and database
query languages. For example, common relational databases run with a
client-server model, one example being PostgreSQL [16], which allows
query engines from many different applications to interact with the soft-
ware while being optimized as a system running on one or more nodes
that are designed to manage the database. The interface presented is in its
own DSL, usually SQL, which is used the same way from many languages.
That said, people often use libraries like object-relational mappers to inter-
act with these databases as a result, which creates inefficiencies because
these libraries need to convert between the database’s communication and
language-specific types, which don’t always match up [9]. If the databaseAnother common

problem is native
data type mismatch:

for example, the
popular Firebase
database silently

strips bits off 64-bit
integers when used

from JavaScript.

is served over the network, extra back-and-forth requests also increase
latency and add wire overhead.

Embedded database engines like SQLite are able to sidestep some of
these issue by compiling the database within the program itself, which
allows all of the data to live within the same process and eliminates com-
munication overhead between the engine and application [8]. Furthermore,
popular data analysis libraries like Pandas [13] can be alternatively viewed
as in-memory data query systems that avoid the object-relational mismatch
entirely by presenting their own, succinct APIs that operate on language-
specific data types. For example, compared the following queries using a
PostgreSQL database and Pandas from Python:

# Using SQL

import psycopg

with psycopg.connect(database_url) as conn:

with conn.cursor() as cur:

cur.execute("""

SELECT state, COUNT(*) FROM people

WHERE name LIKE 'Eric %'
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GROUP BY state;

""")

results = cur.fetchall()

# Using Pandas

import pandas as pd

df = pd.read_csv("people.csv")

results = (

df.loc[df.name.str.startswith("Eric ")]

.groupby("state").count()

)

The latter query works strictly within Python types, while the first query
needs to manage resources like connections and cursors. It’s also written
in a separate language within a string expression that cannot be checked
for syntactical accuracy. Although one could in theory use a PostgreSQL
connector like psycopg with data that’s loaded in memory, in practice
embedded language-specific query engines like pandas are much more
popular because they are faster, easier to use, and more familiar to pro-
grammers, as ordinary Python code.

We’ve drawn a parallel to embedding languages in traditional database
engines, but the idea of embedding libraries is common in many different
software applications. There are often idiomatic library bindings written
for software in specific languages: just a few examples are Z3’s z3py for
Python, the nix crate wrapping libc for Rust, and the Stripe.js library for
Stripe’s HTTP API in JavaScript. Even Souffle has experimental support
for Haskell via import Language.Souffle.Compiled. But these libraries,
although they make interacting with the software easier within a specific
language, can’t make the interface more powerful or expressive. for ex-
ample, you will never be able to inject Python code into a Z3 predicate
because it is not representable within the intermediate format.

In summary, embedding languages provides a powerful interface that
“over the wire” systems cannot provide, simply because they are separated
from the main program using them. These differences affect how conve-
nient it is to use languages, and programmers tend to prefer libraries over
bindings.

5.2 procedural macros

In order to get the benefits of Datalog’s concise syntax while also being
embedded as a library and taking advantage of compiler optimizations,
we implement Crepe using procedural macros.
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A procedural macro is effectively a function that acts as a translator or
basic compiler. It parses some grammar and produces source code from it,
which is then inserted into the program and compiled with the rest of it.
This is typically used to generate repetitive code. For example, one simple
macro from [26] is called seq!, and it is used like so:

seq!(N in 0..512 {

#[derive(Copy, Clone, PartialEq, Debug)]

pub enum Processor {

#(

Cpu~N,

)*
}

});

This module is a very short code snippet, and it includes some fragments
of syntax like N in 0..512 {..} and #( Cpu=N, )* that would ordinarily
not be valid Rust code. However, the seq!() macro is able to intercept
compilation and transform the code into the equivalent:

#[derive(Copy, Clone, PartialEq, Debug)]

pub enum Processor {

Cpu0,

Cpu1,

Cpu2,

Cpu3,

Cpu4,

// ... 505 lines removed for brevity

Cpu510,

Cpu511,

}

The process of replacing macros by the source code they generate is called
macro expansion. The compiler executes code written in a separate package
that conforms to a specific API. For example, seq! is implemented using a
function like:

#[proc_macro]

pub fn seq(input: TokenStream) -> TokenStream {

// ... transform the input code to output code

}

This function has full access to the token stream and can essentially run any
procedure on it. Here, the procedure just looks for the tokens N in 0..512

and searches for fragments of expressions wrapped by #()*, replacing
all occurrences of N in their contents with each number in the integer
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range from 0 to 512. However, the developer has full freedom to interpret
arbitrary syntax in procedural macros as they wish, so although distasteful,
one could just as easily require the macro to be used like:

seq!(hello, do this for every N between ((0 and 512)) {

#[derive(Copy, Clone, PartialEq, Debug)]

pub enum Processor {

(START REPEAT)

Cpu~{{N}},

(END REPEAT)

}

});

Procedural macros are a core part of Rust as a language, and libraries
like serde [25] that rely on procedural macros for code generation have
been downloaded over 140 million times. They are not present in many
other languages like C++, Python, and Java, although this isn’t to say that
they are unique to Rust, as other languages like Julia, Nim, and Lisp have
similar features. (C and C++ do have simple preprocessor directives, but
they do not allow the programmer to run code.)

Crepe takes advantage of procedural macros to their fullest extent: not
just as generators of repetitive code, but as full compilers that transform
arbitrary language syntax into Rust. Similar to how Souffle generates
efficient C++ code from a separate Datalog program before compile time,
Crepe generates efficient Rust code from a Datalog program. The difference
is that Crepe runs during compile-time using procedural macros and can be
more easily embedded into larger programs, as we will see.

5.3 compiling datalog to rust code

Now that we described procedural macros in Rust, we can share how
Crepe works. The most basic example of a Datalog program in Crepe is
the following: Notes about Rust:

the type i32
represents a 32-bit
signed integer, and
struct is a feature
that defines new
record data types.

use crepe::crepe;

crepe! {

@input

struct Edge(i32, i32);

@output

struct Reachable(i32, i32);

Reachable(x, y) <- Edge(x, y);
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Reachable(x, z) <- Edge(x, y), Reachable(y, z);

}

fn main() {

let mut runtime = Crepe::new();

runtime.extend([Edge(1, 2), Edge(2, 3), Edge(2, 5)]);

let (reachable,) = runtime.run();

for Reachable(x, y) in reachable {

println!("node {} can reach node {}", x, y);

}

}

This produces five lines of output, in some order:

node 1 can reach node 2

node 1 can reach node 3

node 1 can reach node 5

node 2 can reach node 3

node 2 can reach node 5

The code within crepe! { .. } is processed by Crepe, and the rest of the
code in the main function shows how you can call Crepe from outside code.
This program takes a directed graph as input and computes its transitive
closure, i.e., all pairs of nodes (x,y) such that there exists a directed path
in the graph from x to y.

The code generated by the crepe! macro includes the definition of a
Crepe “struct” in Rust, which is a template for an object. The object has a
few methods for interacting with the Datalog runtime:

• let mut runtime = Crepe::new() constructs a new runtime, and
the mut keyword in Rust declares the variable as mutable.

• runtime.extend([..]) extends the runtime with input relations
(marked by @input) from an iterable collection.

• runtime.run() consumes the runtime, running the compiled Datalog
program and eventually returning all generated outputs (marked by
@output) as sets.

Another way of describing this is that the interface has roughly the follow-
ing shape, in Rust pseudocode:

use std::collections::HashSet;

/// Object representing the Crepe runtime.
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pub struct Crepe { .. }

impl Crepe {

/// Construct a new Datalog engine.

pub fn new() -> Self {

..

}

/// Run the Datalog program, returning all output relations.

pub fn run(self) -> (HashSet<Reachable>,) {

..

}

}

impl Extend<Edge> for Crepe {

/// Add one or more edges to the engine as inputs.

fn extend(&mut self, iter: impl IntoIterator<Item = Edge> {

..

}

}

This is the most basic example of usage. Crepe has more features and also
supports things like stratified negation, calling Rust functions from directly
within Datalog rules, and extensions for disaggregation and matching with
refutable patterns. But before getting to that, we first discuss how Crepe
compiles this Datalog program to Rust code.

5.3.1 Naive evaluation

The simplest evaluation method is naive evaluation, which repeatedly
iterates over the set of relations and generates new ones until reaching a
fix point, as discussed in Section 3.1. We can implement this in Crepe by
generating source code that corresponds to multiple nested for-loops.

Let’s walk through what this looks like for the transitive closure example.
The function containing all of the relevant code is Crepe::run(), since that
actually evaluates a Datalog program. First, define the relation sets:

let mut __edge: HashSet<Edge> = HashSet::new();

let mut __edge_update: HashSet<Edge> = HashSet::new();

let mut __reachable: HashSet<Reachable> = HashSet::new();

let mut __reachable_update: HashSet<Reachable> = HashSet::new();

We also define an index called __reachable_index_bf for the reachable
relation, whose utility will be apparent soon. This is defined so that the
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entry corresponding to an integer x is the set of all tuples of the form
Reachable(x, _). The _bf in its name comes from the first variable being
bound, while the second variable is free.

let mut __reachable_index_bf: HashMap<(i32,), Vec<Reachable>> =

HashMap::default();

To initialize our runtime, we pass the @input data into the state. Assume
that this is stored in variable self.edge in the runtime.

__edge_update.extend(self.edge);

Now, we can start running the main loop that evaluates rules. We need to
run this loop at least once, but after the first iteration, if all of the update
sets are empty, we’ve reached a fix point and can stop. The first thing
we’ll do in the loop is update all sets with the new facts generated in the
previous iteration.

let mut __crepe_first_iteration = true;

while __crepe_first_iteration ||

!(__edge_update.is_empty() && __reachable_update.is_empty()) {
__reachable.extend(&__reachable_update);

for __crepe_var in __reachable_update.iter() {
__reachable_index_bf

.entry((__crepe_var.0,))

.or_default()

.push(*__crepe_var);

}
__edge.extend(&__edge_update);

Next, we define two _new sets within the inner loop, which will store the
new facts generated during this iteration. We’ll set the _update sets to
these at the end of the loop body.

let mut __edge_new: HashSet<Edge> = HashSet::new();

let mut __reachable_new: HashSet<Reachable> = HashSet::new();

With all of this in place, it’s finally time to generate code for the rules. We
compile the first rule, Reachable(x, y) <- Edge(x, y) into Rust code.

for &Edge(x, y) in &__edge {

let __crepe_goal = Reachable(x, y);

if !__reachable.contains(&__crepe_goal) {
__reachable_new.insert(__crepe_goal);

}

}
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The second rule Reachable(x, z) <- Edge(x, y), Reachable(y, z) is
similar, except it involves two nested loops because there are two clauses.
Note that we use the index we created earlier to avoid having to search
through unnecessary data.

for &Edge(x, y) in &__edge {

if let Some(__crepe_iter) = __reachable_index_bf.get(&(y,)) {

for &Edge(_, z) in __crepe_iter {

let __crepe_goal = Reachable(x, z);

if !__reachable.contains(&__crepe_goal) {
__reachable_new.insert(__crepe_goal);

}

}

}

}

Finally, we finish the main loop.

__reachable_update = __reachable_new;
__edge_update = __edge_new;
__crepe_first_iteration = false;

}

That’s it! When the loop terminates, __reachable will contain the full set
of reachable pairs computed by this Datalog program. We have translated
naive, bottom-up evaluation into Rust code in a mechanical way.

5.3.2 Semi-naive evaluation

Naive evaluation is not very efficient, and we can do a lot better by
only consider running the rules on incremental deltas from the previous
iteration. This was described in Section 3.2. Luckily, extending the above
system to support semi-naive evaluation is very simple. We only have to
make a few minor changes to the code.

First, at the start of the evaluation function, we define an additional
index that stores only facts in __reachable_update.

let mut __reachable_index_bf_update: HashMap<(i32,), Vec<Reachable>> =

HashMap::default();

We modify the code to do bookkeeping on __reachable_index_bf_update,
omitted for brevity. The more interesting part is how rules are compiled
differently. The first rule is almost the same but reads from __edge_update

instead of __edge, since it doesn’t need to ever look at old edges twice.
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for &Edge(x, y) in &__edge_update {

let __crepe_goal = Reachable(x, y);

if !__reachable.contains(&__crepe_goal) {
__reachable_new.insert(__crepe_goal);

}

}

The second rule has two clauses, so it will be compiled into two evaluation
loops.

for &Edge(x, y) in &__edge_update {

if let Some(__crepe_iter) = __reachable_index_bf.get(&(y,)) {

for &Edge(_, z) in __crepe_iter {

let __crepe_goal = Reachable(x, z);

if !__reachable.contains(&__crepe_goal) {
__reachable_new.insert(__crepe_goal);

}

}

}

}

for &Edge(x, y) in &__edge {

if let Some(__crepe_iter) = __reachable_index_bf_update.get(&(y,)) {

for &Edge(_, z) in __crepe_iter {

let __crepe_goal = Reachable(x, z);

if !__reachable.contains(&__crepe_goal) {
__reachable_new.insert(__crepe_goal);

}

}

}

}

In general, if a rule has n clauses consisting of different relations, then the
semi-naive evaluation strategy will have n evaluation loops. The i-th loop
will check over only the update set for the relation in index i and loop
over the full sets in all other indices.

5.3.3 Stratification

The last few subsections have shown how to translate a Datalog program
into compiled Rust code that generates a runtime and evaluates it. How-
ever, many extensions to Datalog require stratification to work properly,
such as negation. Crepe supports stratified negation, so it needs to be able
to split evaluation of programs into strata.
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It does this by breaking up the main loop into one outer loop for every
stratum. These are determined by the strongly connected components of
the relation dependency graph, where each relation r1 has a directed edge
pointing toward r2 if r1, or its negation, appears on the right-hand side of
some Horn clause producing r2.

Strongly connected components can be computed in linear time with
well-known graph algorithms, so we are done. For example, this program
would compile in Crepe and compute the difference of two sets:

crepe! {

@input

struct A(i32);

@input

struct B(i32);

@output

struct C(i32);

C(x) <- A(x), !B(x);

}

We refuse to compile programs that have the negation of r1 on the
right-hand side of a Horn clause producing r2 if r1, r2 belong to the same
strongly-connected component in this graph, as they are not well-formed.
Here is an example of a program that doesn’t work:

crepe! {

@input

struct A(i32);

@output

struct B(i32);

B(x) <- A(x), !B(x);

}

This program is not well-defined, since the fact B(x) is implied by the
negation of B(x), which leads to a contradiction. Crepe indicates this by
presenting the user with a compiler error.

error: Negation of relation 'B' creates a dependency cycle and cannot be stratified.

--> $DIR/recursive_negation.rs:8:14

|

11 | B(x) <- A(x), !B(x);

| ^
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5.4 host language integration

Compiling Datalog directly to Rust code within a procedural macro lets us
take advantage of Rust’s compiler optimizations, as well as LLVM passes,
which combine to generate high-performance code. However, it’s still a
Datalog program without any specific syntax other than data types.

This section outlines additional syntax extensions that allow the user to
seamlessly integrate Crepe programs in Rust, specifically by including raw
code expressions and outside logic. These also let us borrow constants,
functions, and user-defined types from the surrounding Rust code.

5.4.1 Conditionals and expressions

Crepe supports arbitrary Rust expression syntax within rules for construct-
ing new relations, i.e., on the left-hand side of Horn clauses. It also allows
the user to write Boolean expressions evaluated directly as conditional
clauses in rules, if they are surrounded by parentheses.

As an example for demonstration, here is a program that calculates
the first 25 Fibonacci numbers using Rust’s arithmetic and comparison
operators.

crepe! {

@output

struct Fib(u32, u32);

Fib(0, 0) <- (true);

Fib(1, 1); // shorthand for `Fib(1, 1) <- (true);`

Fib(n + 2, x + y) <- Fib(n, x), Fib(n + 1, y), (n + 2 <= 25);

}

Let Fn refer to the n-th Fiboacci number. This program first populates
the Fib relation with two facts, Fib(0, 0) and Fib(1, 1). The next rule then
takes Fib(n, Fn) and Fib(n+ 1, Fn+1), checks if n+ 2 ⩽ 25, and deduces
Fib(n+ 2, Fn + Fn+1) if so. It terminates when no more relations can be
generated, computing the values of F0 through F25.

The Fibonacci example is not practical compared to just writing a typical
imperative loop in Rust, but we will see real-world uses of conditionals
and expressions in Chapter 6.

Crepe also supports variable "let"-bindings in rules, including bindings
that match their arguments conditionally against a pattern. Here is an
example that uses the fallible str::parse(&self) method from the Rust
standard library. Here, the expression string.parse() tries to parse an
integer from a string and returns Ok(n) only if it succeeded.
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crepe! {

@input

struct Value<'a>(&'a str);

@output

struct Squared(i32, i32);

Squared(n, x) <-

Value(string),

let Ok(n) = string.parse(),

let x = n * n;

}

For example, if the inputs were Value("-3"), Value("12"), and finally
Value("hello"), then the two outputs would be Squared(-2, 4) and
Squared(12, 144).

Conditional destructuring is particularly useful for logical reasoning on
program data, which often involves algebraic data types (or enums in Rust).
Since Crepe is a macro, it can use user-defined types from the surrounding
scope, as below.

#[derive(Copy, Clone, Hash, Eq, PartialEq)]

enum Token {

String(&'static str),

Integer(i32),

Fraction(i32, i32),

}

crepe! {

@input

struct ProgramToken(Token);

@output

struct ProgramString(&'static str);

@output

struct ProgramInteger(i32);

ProgramString(s) <-

ProgramToken(t),

let Token::String(s) = t;

ProgramInteger(x) <-

ProgramToken(t),
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let Token::Integer(x) = t;

ProgramInteger(q) <-

ProgramToken(t),

let Token::Fraction(x, y) = t,

(y != 0 && x % y == 0),

let q = x / y;

}

This program takes a collection of Tokens as input and destructures each
of them based on their variant to generate specific output facts. The facts
could then be used as intermediates in a larger program analysis.

The last built-in control flow feature is iteration over data. Rules can
enumerate values from an iterator, allowing them to use data from outside
of Crepe without having to convert functions to use workarounds. For
example, to access the characters of a string, you could write:

crepe! {

@input

struct Name<'a>(&'a str);

@output

struct NameContainsLetter<'a>(&'a str, char);

NameContainsLetter(name, letter) <-

Name(name),

for letter in name.chars();

}

Iteration over data can be combined with lazy evaluation. For example,
in a graph analysis with multiple nodes, a function could be used to lazily
generate the edges adjacent to each node in a graph analysis as they are
visited for the first time. Because Crepe uses semi-naive evaluation, these
functions can be evaluated only once if they are expensive, during the first
iteration that each node is added to the set of relations.

5.4.2 Convergence properties

These control flow primitives are very powerful, but they do come with
some responsibility. For example, Datalog is guaranteed to terminate, and
there is no undefined behavior or side effects. Rust is not guaranteed to
terminate, and any outside functions called from Crepe rules may have
arbitrary side effects, ranging from benign printing and logging to complex
operations like HTTP queries and reading from files. They also might not
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be deterministic; one could imagine calling a function that generates a
random number.

crepe! {

@output

Rel(x) <- let x = fastrand::f64();

}

Or a function that returns a different value each time it is executed (al-
though this is unnatural to do in Rust due to its borrow checker):

use std::sync::atomic::{AtomicU32, Ordering};

static GLOBAL_VAR: AtomicU32 = AtomicU32::new(0);

fn some_number() -> u32 {

GLOBAL_VAR.fetch_add(1, Ordering::Relaxed)

}

crepe! {

@input

struct Foo(&'static str);

@output

struct Bar(&'static str, u32);

Bar(s, some_number()) <- Foo(s);

}

Examples like these break the purity guarantee of Datalog. However, as
long as user-defined functions are written to be pure expressions of the
inputs, then execution of Crepe will still be deterministic.

Programs also need to be written to avoid an infinite set of relations
being generated, as then they will not terminate. Therefore, programs need
not always converge or even produce the same output in pathological
scenarios, but this is a tradeoff that gives Crepe extra flexibility by being
tightly integrated with its host language.
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C A S E S T U D I E S O N P U B L I C U S A G E O F C R E P E

Crepe was publicly released in September 2020. In the following years,
there has been public usage of Crepe by various individuals, companies,
and open-source projects. As of March 2023, it has been downloaded
105,000 times as a Rust library on crates.io. In this chapter we briefly
illustrate how people use Crepe’s features in real-world scenarios.

6.1 access control for cloud infrastructure

Teleport is a software-as-a-service company that creates and offers hosting
for cloud infrastructure systems for identity, access management, and
security. Traditionally these are difficult-to-use and complex, so they have
released open-source software that can be deployed in cloud environments
to manage secrets, authorization, and infrastructure access for developers.
It runs as a user binary on Linux, Kubernetes, and database clusters.
According to their website, Teleport is deployed by companies including
DoorDash, Elastic, Vonage, Nasdaq, and Snowflake.

Most of Teleport’s open source code is written in Go, C, and TypeScript,
with Rust only making up a small fraction of its codebase. Its core autho-
rization engine that tests if users can login to access a certain node on its
network is specified using Datalog. The code in v9.3.26 of the software
uses Crepe to test for role access, using bottom-up evaluation:

const LOGIN_TRAIT_HASH: u32 = 0;

crepe! {

// Input from EDB

@input

struct HasRole(u32, u32);

@input

struct HasTrait(u32, u32, u32);

@input

struct NodeHasLabel(u32, u32, u32);

// ... for brevity, 8 more lines omitted

// Intermediate rules

struct HasAllowNodeLabel(u32, u32, u32, u32);

struct HasDenyNodeLabel(u32, u32, u32, u32);

41

https://crates.io/crates/crepe
https://github.com/gravitational/teleport
https://github.com/gravitational/teleport/tree/v9.3.26/lib/datalog/roletester
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// ... for brevity, 3 more lines omitted

// Output for IDB

@output

struct HasAccess(u32, u32, u32, u32);

@output

struct DenyAccess(u32, u32, u32, u32);

@output

struct DenyLogins(u32, u32, u32);

// Intermediate rules to help determine access

HasAllowNodeLabel(role, node, key, value) <-

RoleAllowsNodeLabel(role, key, value),

NodeHasLabel(node, key, value);

HasDenyNodeLabel(role, node, key, value) <-

RoleDeniesNodeLabel(role, key, value),

NodeHasLabel(node, key, value);

HasAllowRole(user, login, node, role) <-

HasRole(user, role),

HasAllowNodeLabel(role, node, _, _),

RoleAllowsLogin(role, login),

!RoleDeniesLogin(role, login);

// ... for brevity, 16 more lines omitted

// HasAccess rule determines each access for a specified

// user, login and node

HasAccess(user, login, node, role) <-

HasAllowRole(user, login, node, role),

!HasDenyRole(user, node, _),

!HasDeniedLogin(user, login, _);

DenyAccess(user, login, node, role) <-

HasDenyRole(user, node, role),

HasTrait(user, LOGIN_TRAIT_HASH, login);

DenyAccess(user, login, node, role) <-

HasDenyRole(user, node, role),

HasAllowRole(user, login, node, _);

DenyLogins(user, login, role) <-

HasDeniedLogin(user, login, role);

}

This snippet is fairly long, but every line in the Crepe macro clearly
describes a logical rule that forms part of their access control system
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in Datalog. This allows the code to use Crepe as a succinct embedded
language to quickly implement a role-based matching engine that joins
together seven relations of input data.

Embedding in this case also makes the engine faster. As mentioned
previously, Teleport’s codebase is primarily Go. Even though Crepe is
written and has a programming interface in Rust code, this codebase was
able to limit its Rust usage to a single package for the role tester and
compile that to a shared library, which could then be used via foreign
function interface in Go. Therefore, the role tester remains embedded
and does not have to go through the overhead of launching a separate
subprocess, or communicating through network sockets, to compute the
result of an access query.

6.2 job scheduling in a streaming sql database

Another project that uses Crepe is RisingWave, a distributed SQL database
for stream processing. This is an open-source database systems project,
which is used in production by “dozens of companies across a diverse
range of industries, including entertainment, fintech, social media, and
manufacturing.” It has been compared (see [31]) to other incremental
query processing systems like Materialize, which is based on differential
dataflow [15].

The database acts as a distributed incremental query engine, accept-
ing data from streams like Apache Kafka and other similar sources to
incrementally maintain materialized views, which it uses to respond to
queries from a PostgreSQL-compatible wire protocol. The incremental
maintenance allows it to respond to queries in real time.

The system is written entirely in Rust, which makes it a natural fit for
Crepe’s embedded language API. RisingWave v0.1.17 uses Crepe in its
distributed scheduler for queries across multiple database shards. This
scheduler operates on a query graph and performs a dataflow analysis
while resolving the query, also checking for conflicts.

The change that replaced their previous, homegrown scheduler with a
new version based on Crepe eliminated over 500 lines of code. In the words
of the author in their pull request, it also helped “simplify” and “generalize”
their logic, “make the whole [scheduler] progress much clearer,” and
“improve the readability a lot.”

Here are the core snippets of code that implement their stream graph
scheduler. It includes a sampling of many of Crepe’s features mentioned
in Chapter 5 as an embedded language. First, they define several data
types in ordinary Rust syntax. (Comments in code quoted in this section
have been lightly edited for clarity.)

https://github.com/risingwavelabs/risingwave
https://github.com/risingwavelabs/risingwave/blob/464398c0cf11849fe8cb106d5b0e7af2e83a67c3/src/meta/src/stream/stream_graph/schedule.rs
https://github.com/risingwavelabs/risingwave/blob/464398c0cf11849fe8cb106d5b0e7af2e83a67c3/src/meta/src/stream/stream_graph/schedule.rs
https://github.com/risingwavelabs/risingwave/pull/7659
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#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]

struct Id(u32); // NB: this type is simplified for exposition

type ParallelUnitId = u32;

type HashMappingId = usize;

/// Distribution ID processed in the scheduler.

#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]

enum DistId {

Singleton(ParallelUnitId),

Hash(HashMappingId),

}

/// Facts as the input of the scheduler.

#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]

enum Fact {

/// An edge in the stream graph.

Edge {

from: Id,

to: Id,

dt: DispatcherType,

},

/// A distribution requirement for an external fragment.

ExternalReq { id: Id, dist: DistId },

/// A singleton requirement for a building fragment.

SingletonReq(Id),

}

/// Results of all building fragments, as the output of the scheduler.

#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]

enum Result {

// ... omitted for brevity

}

The user-defined types in this snippet, such as the ParallelUnitId type
alias and the DistId tagged union type just use plain Rust features. All
of this code so far could have been written naturally without Crepe, but
Crepe can process these user-defined types regardless.

The big picture is that the Fact enum defines certain dependencies
between nodes with integer identifiers, which represent a directed graph.
Then, the scheduler returns a set of Results, which determine where
different fragments of the query are executed. The remaining details of
the scheduler are not important for this discussion.
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Immediately following these data type definitions follows the invocation
of the crepe! macro, which performs a dataflow analysis with Datalog. In
a total of just 13 rules, this logic program defines the scheduling system for
a stream graph running on distributed database workers, including logic
for detecting failures. It weaves together a combination of features like
algebraic data types, stratified negation, and embedded Rust expressions
to work naturally with the surrounding code.

crepe::crepe! {

@input

struct Input(Fact);

struct Fragment(Id);

struct Edge(Id, Id, DispatcherType);

struct ExternalReq(Id, DistId);

struct SingletonReq(Id);

struct Requirement(Id, DistId);

@output

struct Success(Id, Result);

@output

struct Failed(Id);

// Extract facts.

Fragment(id) <-

Input(f), let Fact::Fragment(id) = f;

Edge(from, to, dt) <-

Input(f), let Fact::Edge { from, to, dt } = f;

ExternalReq(id, dist) <-

Input(f), let Fact::ExternalReq { id, dist } = f;

SingletonReq(id) <-

Input(f), let Fact::SingletonReq(id) = f;

// Requirements from the facts.

Requirement(x, d) <- ExternalReq(x, d);

// Requirements of `NoShuffle` edges.

Requirement(x, d) <- Edge(x, y, NoShuffle), Requirement(y, d);

Requirement(y, d) <- Edge(x, y, NoShuffle), Requirement(x, d);

// The downstream fragment of a `Simple` edge must be singleton.

SingletonReq(y) <- Edge(_, y, Simple);

// Multiple requirements conflict.

Failed(x) <-



46 case studies on public usage of crepe

Requirement(x, d1), Requirement(x, d2),

(d1 != d2);

// Singleton requirement conflicts with hash requirement.

Failed(x) <-

SingletonReq(x), Requirement(x, d),

let DistId::Hash(_) = d;

// Take the required distribution as the result.

Success(x, Result::Required(d)) <-

Fragment(x), Requirement(x, d), !Failed(x);

// Take the default singleton distribution as the result,

// if no other requirement.

Success(x, Result::DefaultSingleton) <-

Fragment(x), SingletonReq(x), !Requirement(x, _);

// Take the default hash distribution as the result, if

// no other requirement.

Success(x, Result::DefaultHash) <-

Fragment(x), !SingletonReq(x), !Requirement(x, _);

}

The system is also able to report results on success and has very little
fixed overhead because as an embedded macro, it generates code that
runs directly in the process, rather than requiring a separate OS process
or language boundary.

6.3 distributed data privacy model checker

The past examples have been in industry projects backed by companies
aiming to sell a product. This final example is in Project Oak, an open-
source research project on formal verification of security in distributed
systems [11].

The arcsjs-provable package in Project Oak performs proofs on mod-
els from ArcsJs, a research secure application framework. It uses Crepe
in the latest version at the time of writing, in March 2023. The primary
usage is a logic program (in over 200 lines of code) that verifies a set
of claims and capabilities over a graph. They use all of the features of
Crepe, including custom data types from Rust, embedded expressions,
and disaggregation.

Because the program is so long, it is not possible to summarize the
usage in full in this paper. We refer the reader to the permanent link above
if they are interested. However, we can still present some parts of it. All
snippets below are inside the crepe! macro, and you can assume the Ent

type represents a 64-bit integer ID.

https://github.com/project-oak
https://github.com/project-oak/arcsjs-provable/blob/3d29eec629e6d7d78b060658e99c367e96bdfc7b/ibis/src/recipes.rs
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struct CompatibleWith(pub Ent, pub Ent); // from, to

// Base case: just types.

CompatibleWith(x, y) <-

KnownType(x),

(!x.is_a(WITH_CAPABILITY)),

KnownType(y),

(!y.is_a(WITH_CAPABILITY)),

Subtype(x, y);

// Check that y has the capabilities required by x.

CompatibleWith(x, y) <-

KnownType(x),

(x.is_a(WITH_CAPABILITY)),

KnownType(y),

HasCapability(y_cap, y), // For each capability y supports

Subtype(x.args()[0], x_cap),

Capability(x_cap, y_cap), // If supported we can continue.

CompatibleWith(x.args()[1], y);

// If a type has no capabilities, discard the capabilities

// of its possible super type.

CompatibleWith(x, y) <-

KnownType(x),

(!x.is_a(WITH_CAPABILITY)),

KnownType(y),

(y.is_a(WITH_CAPABILITY)),

CompatibleWith(x, y.args()[1]);

This set of three rules defines the CompatibleWith relation, which is part
of a larger static analysis. It combines relations and facts from several data
sources within a single grammar. Also, it’s able to use user-defined meth-
ods on their custom data type like in the clause x.is_a(WITH_CAPABILITY),
which is a pure function that runs due to the embedding.

These kinds of complex rules combining multiple facets are common
in static program analyses, such as the large analyses specified in the
artifacts for Formulog [2]. Datalog allows the user to express this kind of
computation succinctly using recursive queries.

Another interesting part of this logic program using Crepe is the Subtype
relation, whose rules involve a lot of Rust embedding. Specific examples
of this have been annotated as comments below.

Subtype(x, prod) <-

KnownType(prod),
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(prod.is_a(PRODUCT)), // embedded conditional expression

KnownType(x),

// num_args() is a Rust function

SubtypesAllArgs(x, prod, prod.num_args());

Subtype(prod, arg) <-

KnownType(prod),

(prod.is_a(PRODUCT)),

for arg in prod.args(); // disaggregation

Subtype(labelled, labelled.args()[1]) <- // .args()[1] is Rust syntax

KnownType(labelled),

(labelled.is_a(LABELLED));

In another part of the subtyping rules of this program, we can see how
including other Rust macros in expression position can be used to shorten
some of the code.

Subtype(

apply!(x_generic, x_arg),

apply!(y_generic, y_arg)

) <-

// ent! is a Rust macro, and it works fine

Subtype(x_generic, ent!(GENERIC)),

Subtype(x_generic, ent!(INDUCTIVE)),

Subtype(y_generic, ent!(GENERIC)),

Subtype(y_generic, ent!(INDUCTIVE)),

Subtype(x_generic, y_generic),

Subtype(x_arg, y_arg),

KnownType(apply!(x_generic, x_arg)), // apply! is also a macro

KnownType(apply!(y_generic, y_arg));

These examples indicate that the natural mechanisms for extending
Crepe to interoperate better with and within Rust, its host language, are
useful enough to appear in real-world code. Such features are only possible
in embedded dialects of Datalog, and as Crepe is the first such embedded
dialect that runs as a procedural macro, it aims to support them to their
fullest extent by design.
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It’s difficult to fully expound on the real-world characteristics of a program-
ming language system for deductive inference, since by their expressive
nature, logic programs tend to vary widely in the shape and structure of
their computation. Each application of logic programming described in
Chapter 4 has its own register of programming, with unique requirements
for expressiveness and performance.

Crepe is a library that is meant to be embedded in Rust, and in that
regard it has found its place in several applications as described in the
last chapter. I will preface this chapter by saying that this is probably the
best argument that can be given for showing that something as multi-
dimensional as a programming language system is useful, as there are
nebulous factors that go into any discussion of this. However, we can and
should still do some basic performance and expressiveness benchmarks to
evaluate the system and demonstrate that it works as intended.

7.1 performance benchmark

Performance in Datalog engines has many factors. In the case of Crepe,
the most comparable work include compiled Datalog engines like Souffle
[10] and Formulog [2], as well as simple low-level embedded engines with
restrictions, of which Datafrog is likely the best example [14].

Since Crepe doesn’t have a single targeted use case, there is no represen-
tative benchmark that can be supported and run by all of the engines, so
we’ll instead share some basic results from a simple Datalog program run
on inputs of different sizes. Consider the “graph walk” program below,
which constructs a simple directed graph of edge density 0.04 and com-
putes all of the paths in that graph of less than a certain length, as well as
all pairs of nodes that do not have paths between them.

use crepe::crepe;

const MAX_PATH_LEN: u32 = 30;

crepe! {

@input

struct Edge(i32, i32, u32);

49
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@output

struct Walk(i32, i32, u32);

@output

struct NoWalk(i32, i32);

struct Node(i32);

Node(x) <- Edge(x, _, _);

Node(x) <- Edge(_, x, _);

Walk(x, x, 0) <- Node(x);

Walk(x, z, len1 + len2) <-

Edge(x, y, len1),

Walk(y, z, len2),

(len1 + len2 <= MAX_PATH_LEN);

NoWalk(x, y) <- Node(x), Node(y), !Walk(x, y, _);

}

fn walk(n: usize) -> (usize, usize) {

let n = n as i32;

let mut edges = Vec::new();

for i in 0..n {

for j in 0..n {

if (i + j) % 50 < 2 {

edges.push(Edge(i, j, 5));

}

}

}

let mut runtime = Crepe::new();

runtime.extend(edges);

let (walk, nowalk) = runtime

.run_with_hasher::<fnv::FnvBuildHasher>();

(walk.len(), nowalk.len())

}

Crepe is single-threaded because it is intended to be embedded in larger
programs. I ran this program in Crepe on a computer with an ARM64

Apple M1 Pro processor and 16 GB of RAM. I also ported the Datalog parts
of the same program to Souffle and Formulog, and I timed the resulting
execution on a single thread in all three runtimes for n = 32, 128, 512, 1024
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engine code compile nodes (n) avg . runtime

Souffle (I) 12 lines — 32 11.8ms

v2.4 128 32.3ms

512 1.00 s

1024 7.54 s

Souffle (C) 12 lines 8.2 s 32 10.0ms

v2.4 128 18.3ms

512 284ms

1024 1.99 s

Formulog 12 lines — 32 1.89 s

v0.7.0 128 2.68 s

512 7.38 s

1024 26.9 s

Datafrog 36 lines 0.46 s 32 25.2µs

v2.0.1 128 1.78ms

512 71.5ms

1024 549ms

Crepe 12 lines 0.69 s 32 91µs

v0.1.7 128 3.3ms

512 84.8ms

1024 567ms

Table 7.1: Performance of Datalog engines on the graph walk benchmark.

nodes in the graph. Note that the number of edges in the graph is quadratic,
asymptotically approaching n2/25 where n is the number of nodes. The
results are shown in Table 7.1.

The “Code” column shows the total number of lines of code in the
Datalog part of each implementation. This doesn’t include code to generate
the graph, massage the input into a form (“fact file”) that the engine
supports, or start the engine as a subprocess, since that obviously requires
less code in Crepe because it is an embedded library. The “Compile”
column shows how much time it took to compile the program, for engines
with a separate compilation step. For all three of Souffle, Datafrog, and
Crepe, we include linking of the final executable, but we don’t include
building dependencies because that is a one-time operation.
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The engines labeled “Souffle (I)” and “Souffle (C)” are the interpreted
and compiled versions of Souffle, respectively. Formulog has a compiled
version, but that was not included due to instability in its current API.
Datafrog was also compared, but because it is a low-level engine that
requires the programmer to manually structure joins and optimize their
computation, it required substantially more code. Compared to the other
engines, which just asked for Horn clauses, the code for the Datafrog
implementation was much more difficult to write. The Datapond tool can
help scaffold Datafrog programs, but there’s no way to fully generate the
program from Horn clauses.

Nevertheless, Datafrog is valuable as a performance goal to aspire to,
especially since it is also an engine that works well within larger Rust
programs. It also uses an interesting optimized join algorithm.

Timings were measured by the sum of user and system time, meaning
total time in computation. This is equal to wall clock time for most engines,
since they are run in single-threaded mode. The only exception to this was
Formulog, since although Formulog allows setting the parallelism option
to 1, it still appears to spawn several threads. So for Formulog, the tableThese might be JVM

threads, or threads
used by Formulog
for something else.

includes the total execution time for all threads.
Every benchamrk iteration was prefaced with sync && sudo purge to

drop file system caches, for performance consistency. Every Datalog analy-
sis had 2 warmup runs, followed by between 10-100 subsequent runs, and
the results were averaged. The timings for interpreted engines (Souffle (I)
and Formulog) include program parsing time, since parsing is required on
each run if that variant of the engine is embedded within a larger software
codebase.

7.2 discussion

Souffle and Formulog are both designed to run much larger analyses, and
the design of their engines reflect this, with a lot of emphasis on features
like concurrent data structures for efficient evaluation and an API that
uses tab-separated “fact files” that are stored in a separate directory.

As a result, these engines are less suitable for the kinds of embedded
deductive reasoning that Crepe is typically used for, and they have higher
startup cost when evaluating the small to medium-sized inputs (graphs of
up to 1024 nodes and 42000 facts) tested here. Souffle in particular is very
slow to compile because it generates hundreds or thousands of lines of
C++ code for even very short programs, which makes it harder to develop
programs without relying on the interpreter. It’s not uncommon to wait
several minutes for Souffle to compile more complex programs.

From these examples, it appears that Crepe outperforms the two pro-
gram analysis-focused engines, Souffle and Formulog, at this embed-

https://github.com/lqd/datapond
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ded logic programming task. Crepe also has comparable performance to
Datafrog, although it is not quite able to match Datafrog’s speed, especially
for small inputs. However, Datafrog is a very low-level engine that only Note that Crepe and

Datafrog use
different algorithms,
so it’s an interesting
coincidence that
their total runtimes
are similar on the
larger inputs.

provides bits and pieces, while the burden of optimization and actually
implementing nontrivial queries is put on the user of the library. Even so,
despite the large differences in ease-of-use, Crepe is only around 10-20%
slower than Datafrog on this benchmark for n = 512, 1024 and between
2-4x slower for n = 32, 128.

From this benchmark, running engines like Souffle or Formulog within
a larger application seems difficult. Besides the annoyance of having to
create your own fact files within a directory and launch the subprocess,
there is also significant overhead to all of these extra steps, as shown in the
runtime being over 100-10000 times slower for the benchmarks on a graph
with 32 nodes. If a larger application were running such a program on
many small inputs, as in the case studies from Section 6.1 and Section 6.2,
this fixed-cost overhead would likely be unacceptable.

Thus, Crepe fills a void in the existing space of Datalog dialects by
being simple and direct to use, unlike Datafrog, while also remaining very
fast, pragmatic, and easy to embed in larger programs, unlike standalone
Datalog engines for program analysis. It’s able to achieve this unique
combination of simplicity and expressiveness through careful language
design around seamless compilation of procedural macros.
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R E A C T I V E N O T E B O O K S F O R D ATA A N A LY S I S A N D
V I S UA L I Z AT I O N

One of the most substantial questions in modern science is how to make
data analyses accessible to a broader audience. Accessibility is a serious
concern for data systems because conclusions drawn from data often
have far-reaching consequences, so it is important for scientists to not just
communicate the conclusions they find from a data study, but also to give
others the ability to verify, reproduce, and extend their results.

Interactive notebooks are a common way of sharing literate programs
with documentation, graphics, and computations. In data science, one of
the most popular tools in this category is Jupyter [17], a software platform
that aims to promote “open science” by allowing programmers to develop
multimedia documents where the underlying source code (Python or R) is
completely visible. However, Jupyter notebooks have design choices that
limit reproducibility, since they necessarily rely on highly technical aspects
of the user’s computer: installed software, hardware type, drivers (e.g.,
GPU availability), operating system, programming language version, file
system, access to data, networking, and numerous other concerns.

Additionally, Jupyter notebooks typically run code in a supported kernel
language, such as Python or R. However, these languages are imperative
by nature and do not natively support declarative transformations for
relational data. Even with libraries provide native domain-specific query
languages for interacting with data, such as Pandas [12] and Dplyr [30],
these APIs are fundamentally constrained by the limits of their host
language and therefore cannot provide a fully declarative interface, like
SQL databases.

To resolve these issues, in this part, I propose that exploratory data
analysis should ideally be executed in an environment that is:

• Declarative: Allows users to analyze, clean, manipulate, and visu-
alize data within a single context, with minimal technical “glue”
overhead.

• Interactive: Is simple, tangible, and easy to play with, since data
analysis is a process that is fundamentally based on exploration.

• Reproducible: Has minimal overhead for software installation, uses
permanent, public addresses for data, and can be run and modified
by anyone with access to the notebook.

57
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To meet these goals, we introduce Percival, a language for declarative data
analysis and visualization. Percival builds on Datalog as a core, extending
it with reactive features, aggregations, and embedded JavaScript. Percival
also integrates with modern, declarative plotting libraries (based on D3 [3])
and seamlessly propagates reactive execution through these components.

One inconvenience with past Datalog implementations is that they
have been tied to complex domain-specific databases (see Section 4.4) or
runtime environments (see Section 4.1). In contrast, Percival is able to
import data from standard web formats (JSON, CSV) and uses a novel
method of compiling queries just-in-time to JavaScript, enabling a more
accessible editing experience. As a consequence, Percival is also the first
compiled Datalog engine that runs entirely in standard web browsers,
without requiring communication with a background server.

8.1 design goals

Any system for data analysis needs to allow users to load data from
one or more sources, calculate with and transform that data, generate
visuals, and share the resulting analysis with others. Most data analyses
are somewhat complex, so the user needs to write code in order to deal
with different formats and flexibly express other common operations, such
as statistical algorithms and parsing. When code is involved, libraries are
often designed to help programmers quickly write efficient code.

The focus of this project was to explore connections at the language
level between Datalog and data analysis. However, such changes need to
be evaluated holistically due to how complex the data analysis process is.

Therefore, we chose a literate programming interface that combines code
with text as the primary method of interacting with our language. The
user interface contains no hidden state, and it is presented as an interactive
notebook, with three types of cells:

• Code cells: Contain Percival programs in Datalog syntax, which is
where queries are written, outputting the result of queries.

• Markdown cells: Contain documentation and rich text description,
displaying a rendered view of the Markdown that automatically
updates as the user types.

• Plot cells: Contain code for data visualization, outputting a rendered
chart in interactive SVG format.

Percival is a client-side web application running fully in the user’s browser.
The notebook frontend is built with general-purpose web frameworks
(Svelte, Tailwind CSS) and relies on other open source libraries, including

https://github.com/ekzhang/percival
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CodeMirror 6 for live code editing and syntax highlighting, Remark for
Markdown rendering, and KaTeX for LATEX math support.

This information is provided for context. An interested reader can see
Percival’s source code for more details on the software engineering and
interface design components, but those are not the focus of this thesis. In
this section we discuss the design goals for the Percival language itself,
i.e., the just-in-time compiled dialect of Datalog used in code cells.

8.1.1 Exploration versus engineering

Percival’s design fundamentally differs from Crepe in its primary purpose:
while Crepe is meant for careful embedding within a system, Percival is
designed for exploratory tasks. These differing objectives highlight the
duality of computer usage, serving both as tools for building applications
and as platforms for understanding digital information.

For example, engineering systems demand reliability, testability, and
extensibility, whereas data analysis prioritizes expressiveness, flow state,
and ease of presenting information. In systems programming, writing one
or even five extra lines of code to use a library may not be a significant
concern, but in data analysis, this can become a substantial annoyance,
impeding the flow of exploration. Therefore, Percival accents how Datalog
can flexibly and naturally express relational programming on data.

Visualization plays a critical role in data analysis tools, as it leverages
our eyes’ high-throughput sensory capabilities. By representing data in
a two-dimensional space, users can quickly grasp patterns, trends, and
outliers that might otherwise be difficult to discern.

Data exploration often involves rapid iteration and experimentation,
requiring tools that can accommodate quick changes and updates. Code
in this context will be written once but edited multiple times interactively,
emphasizing the need for an environment that supports rapid modification
and real-time feedback.

Tight feedback loops are also important in other usage contexts. Inter-
active visualizations, similar to those published by the New York Times,
exemplify the appeal of engaging with data directly. By allowing users
to touch and manipulate data, they foster a deeper understanding of the
information being presented.

8.1.2 Experiments around reactivity

Another design goal of Percival is to see how reactive computing work-
flows fit in with Datalog as a language. Reactivity has a rich history in
the programming languages literature, and its effects can be seen in many
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of the modern UI frameworks and building blocks that programming
commonly use today.

When reactivity is presented here though, it refers to a particular ap-
plication, more concrete than the state-of-the-art of theory. We consider
how reactivity can help programmers in the context of interactive data
notebooks, where people work quickly and often need to change code to
adjust their analysis as they make new observations.

Imagine a spreadsheet software application. The data is laid out fully in
front of the user in cells, and they are allowed to perform computations
on that data using formulas. Formulas can depend on each other, just like
in programming languages. The crucial feature of spreadsheets is that
if you change a cell, all cells that depend on it will also be recomputed
automatically, as well as cells depending on those, and so on.

Newer notebook software like Observable, Pluto.jl, and Hex adopt this
model to avoid the limitations of classic imperative-style notebooks like
Jupyter. In Jupyter notebooks, the order in which cells are executed affects
the semantics, and users must manually rerun all cells if the first one
changes. This can be useful in situations where code is slow to run, such
as machine learning, but it creates unnecessary friction for exploratory
analysis of small datasets. Moreover, if a cell that added or mutated
variables is deleted, those changes persist even after the cell’s removal.

Reactivity allows users to see all the state in the notebook simultaneously,
similar to reactive libraries’ appeal for frontend development. However,
adding reactivity to most languages is not trivial. For example, Python’s
dynamic nature resists static analysis to track data dependencies, and
Jupyter has a vast ecosystem of third-party extensions that would likely
be incompatible. Notebooks like Observable implement a source code
transpiler on top of JavaScript and provide rules to the programmer.
Similarly, Pluto.jl restricts its code cells to define exactly one variable and
uses Julia’s built-in code parser to then analyze dependencies.

To incorporate reactivity as a feature, Percival must add it to Datalog.
Fortunately, the language is simple enough to enable this. Each cell is
implemented as a separate stratum of execution, which has tradeoffs but is
flexible enough for most analyses that are typically step-by-step. Reactivity
and stratification also allow Percival to isolate each execution in a separate
Web Worker thread and run them concurrently, enabling termination of
threads that are stale, crash with errors, or enter an infinite loop.

8.2 the percival language

The syntax of Percival is compactly and unambiguously summarized by
the extended Backus-Naur form grammar in Fig. 8.1. This section will

https://observablehq.com/
https://github.com/fonsp/Pluto.jl
https://hex.tech/
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1 (* Note: jsexpr_, number_, string_, identifier_, and boolean_ are

2 tokens from lexical analysis. *)

3

4 program = { statement };

5 statement = rule | import;

6

7 rule = literal, "." | literal, ":-", clauses, ".";

8 clauses = { clause, "," }, clause;

9 clause = literal | jsexpr_ | binding;

10 literal = identifier_, "(", [ { prop, "," }, prop ], ")";

11 binding = identifier_, "=", value;

12 prop = identifier_, [ ":", value ];

13

14 value = identifier_ | primitive | jsexpr_ | aggregate;

15 aggregate = identifier_, "[", value, "]", "{", clauses, "}";

16 primitive = number_ | string_ | boolean_;

17

18 import = "import", identifier_, "from", string_;

Figure 8.1: Simplified EBNF grammar for the Percival language.

provide guided examples of the syntax, while commenting on syntactic
and semantic differences from other existing Datalog implementations.

8.2.1 Basic syntax

At its core, a Percival program (as a dialect of Datalog) is a series of rules
written as Horn clauses. In this basic capacity, Percival draws most of its
core semantics directly from Datalog. The simplest example is a program
that computes the transitive closure of a directed graph.

edge(from: "foo", to: "bar").

edge(from: "bar", to: "baz").

path(from, to) :- edge(from, to).

path(from, to) :- edge(from, to: z), edge(from: z, to).

The expected behavior of this program would be that it derives three facts,
written below.

path(from: "foo", to: "bar").

path(from: "bar", to: "baz").

path(from: "foo", to: "baz").

Here, Horn clauses are used to construct relational queries. Notice however
that unlike Prolog, Percival uses named fields to represent relations. This
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has advantages for representing the types of data common in data analysis
tasks, which is often in the structure of named records and tables, but
the difference in syntax may appear jarring at first. When a field name is
referred to without a value, as in tc(from, to), it is a syntactic shorthand
for the literal tc(from: from, to: to).

8.2.2 Embedding JavaScript

Although Horn clauses are already enough to arrive at a pure Datalog lan-
guage with well-behaved semantics and guaranteed termination, practical
data analyses require a richer class of primitives to allow programmers
to perform computation. Rather than constructing a new domain-specific
language for this, Percival allows users to embed JavaScript at necessary
locations in their code, between backquote `...` characters. For exam-
ple, the program below uses the built-in Math.sqrt() function and string
concatenation.

name(full_name: `first + " " + last`, sqrt_age) :-

person(first, last, age),

sqrt_age = `Math.sqrt(age)`.

person(first: "Alice", last: "Carol", age: 20).

person(first: "Foo", last: "Bar", age: 45).

person(first: "Baz", last: "Lam", age: 12).

Because Percival runs within the user’s browser (more on this in Sec-
tion 8.3), user-provided JavaScript can be embedded with the Percival
compiler’s output, similar to how a C compiler allows programmers to
write inline assembly syntax. This approach was inspired by previous work
on embedding Rust in Crepe, described in Part II. The resulting JavaScript
code is executed by the browser’s JIT engine in tandem embedded in
Datalog inference logic.

Some clauses in a rule are temporary bindings such as sqrt_age in the
example above, which define a variable in the context of the current rule’s
execution. This was done for efficiency, to reuse computation in the case of
repeated expressions, and to allow programmers the flexibility to rename
their variables. It also means that Percival data types are identical to
the data types of the environment’s underlying JavaScript engine, which
reduces interpretation overhead.

If an embedded JavaScript expression is placed in clause position with-
out being in a binding, it is treated as a filtering operation for that rule.
For example, the following program computes all walks of length at most
10 in a directed graph.
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walk(from: v, to: v, len: 0) :- edge(from: v).

walk(from: v, to: v, len: 0) :- edge(to: v).

walk(from, to, len) :-

walk(from, to: z, len: len1),

edge(from: z, to),

len = `len1 + 1`,
`len <= 10`.

To show one more example of the utility of embedding expressions from
the host language, here is a simple program in Percival that computes the
values of the first 30 Fibonacci numbers.

max_n(value: 30).

fib(n: 0, v: 0).

fib(n: 1, v: 1).

fib(n: `n + 1`, v) :-

fib(n, v: v1),

fib(n: `n - 1`, v: v2),

v = `v1 + v2`,
max_n(value),

`n < value`.

Notice above that the max_n relation is used as a constant. By chang-
ing the value provided in the relation, the programmer can interactively
modify the limits of the index n that the computation goes up to, while
remaining within the logic programming framework.

8.2.3 Data imports

Percival allows the user to load any public JSON, CSV, or TSV dataset from
GitHub, NPM, or HTTPS web link, although the latter option is subject This internally uses

jsDelivr, a free
content delivery
network for open
source files.

to the same-origin policy. In the following example, we import a publicly
available dataset on cars from NPM.

import cars from "npm://vega-datasets@2.1.0/data/cars.json"

Note that npm:// and gh:// package imports have an optional tag that can
be used to specify the specific version, release, or Git commit hash that
the data should be loaded from. Given a JSON file, the contents should be
an array of objects that are loaded into a relation by the given name. CSV
and TSV files are handled similarly, although the data types in the file are
also inferred to make loading numerical data easier.

https://www.jsdelivr.com/
https://en.wikipedia.org/wiki/Same-origin_policy
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8.2.4 Aggregation

Many practical data analyses will often include one or more levels of
aggregation, to combine multiple data rows into a single output by applying
a mathematical operator. Percival supports aggregates through a nested
subquery syntax. Currently, the supported aggregates are sum, min, max,
mean, and count. For example, the following query finds the average
mileage of all cars in the dataset, partitioned by year and country of origin.

average_mpg(country, year: `new Date(year)`, value) :-

country(name: country),

cars(Year: year),

value = mean[Miles_per_Gallon] {

cars(Origin: country, Year: year, Miles_per_Gallon)

}.

It is important to note that aggregates are placed in value position, and the
subqueries in aggregate syntax run a fully enabled set of features in the
Percival syntax. However, unlike top-level queries, relations mentioned in
subqueries are required to belong to the dependencies of a program cell;
they cannot belong to the intensional database. This is a manual realization
of stratified code to avoid compiler errors (see Section 2.4). The Percival
prototype does not yet compute strongly connected components, requiring
the user to split their strata between multiple cells instead, although this
is not a fundamental limitation.

Also, aggregates in Percival are a superset of stratified negation. Nega-
tions of literals on the right-hand side of a rule can be simulated using
aggregates by simply checking that the count value of a trivial subquery
equals zero, using an embedded JavaScript equality comparison.

Since aggregation is so particularly common in data analysis, Percival
also supports nested aggregates or subqueries. The following program,Souffle and some

other systems only
support one level of

aggregation.

using the student(name) and assignment(author, grade) relations, com-
putes the total sum of the average grade each student received on their
assignments.

result(value) :-

value = sum[highest_grade] {

student(name),

highest_grade = mean[grade] {

assignment(author: name, grade)

}

}.

Finally, it is worth noting that Percival can be very easily extended
with new aggregates, since each operation is implemented as a simple
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function in JavaScript that is passed to the runtime. For example, the
current implementation of the five basic aggregate operations in TypeScript
is shown below. A future version of Percival could also allow users to
define their own custom aggregate functions by embedding this kind of
imperative specification.

const aggregates: Record<string, (results: any[]) => any> = {

count(results) {

return results.length;

},

sum(results) {

return results.reduce((x, y) => x + y, 0);

},

mean(results) {

return results.reduce((x, y) => x + y, 0) / results.length;

},

min(results) {

let min = null;

for (const x of results) {

if (min === null || x < min) {

min = x;

}

}

return min;

},

max(results) {

let max = null;

for (const x of results) {

if (max === null || x > max) {

max = x;

}

}

return max;

},

};

8.3 sandboxed web runtime

Percival programs are written in an interactive notebook interface that
runs in any web browser. The declarative specifications are just-in-time
translated to imperative JavaScript code and executed within a worker
thread of that same web browser, never leaving the user’s computer.

Percival uses automatic index generation, a semi-naive evaluation strat-
egy, and immutable set data structures to run Datalog programs quickly,
similar to the staged compilation approach taken by Crepe. The Percival
compiler (i.e., the Datalog-to-Javascript translator) is written in Rust, and
it can be compiled to WebAssembly to run in the browser itself.
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Figure 8.2: Simple time-series line chart drawn in a Plot cell with Percival.

We will omit sharing an example of the generated JavaScript code for
brevity, as it is quite complicated, but the results of the translation are very
similar to the program that was walked through in Section 5.3. Declarative
logic specifications are translated into JavaScript code, which pulls in
dependencies and language intrinsics, including the Immutable.js library,
and then the semi-naive evluation code is executed.

Another aspect of the web notebook environment is data visualization.
Visualization is a key tool for exploring complex datasets and effectively
communicating results to others. As mentioned previously, Percival allows
the user to include Plot cells, which run JavaScript code that generates
diagrams using the Observable Plot library. This could be easily extended
to support any declarative plotting library on the web.

A simple example of a Plot cell is shown in Fig. 8.2. The syntax of the cell
consists of a relation name, followed by the => token, and then a JavaScript
expression that returns an SVG vector plot that can be rendered by the
browser. Using such a method to integrate external libraries, Percival
is able to rely on modern data visualization tools to parse declarative
specifications, which enables a great deal of freedom in their expressive
qualities.

We will now discuss how and in what order code is executed. First,
to make Percival’s runtime reactive, code in a notebook is split between
multiple cells, and when one cell uses a relation defined in another, the

https://immutable-js.com/
https://observablehq.com/@observablehq/plot
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Percival runtime will construct a dependency graph and execute the
programs in reverse topological order based on which dependencies have
changed. This is analogous to stratification discussed in Section 2.3.

As an example of this behavior, if a user had two cells where one
depended on the other, such as one cell that imports the cars dataset,
and another cell that runs an aggregate query on it, then changing either
cell would rerun both cells in order, while changing the aggregate cell
would only rerun that cell individually. We choose to enforce that cells
respect stratification, in that two cells cannot belong to the same stratum
or contain any rules that generate the same relation, to make cross-cell
dependencies more clear for the programmer.

Because Percival runs entirely within a browser environment, security
and performance is also a concern. If a long-running computation such
as an infinite loop were to occur in a notebook, it would be unacceptable
for this computation to block the browser’s main thread, as this would
cause the user interface to freeze and the website to eventually crash. Fur-
thermore, Datalog execution is inherently parallelizable between different
cells, and it should be possible to cancel and restart a computation if some
of its dependencies change in the middle of execution.

To address these issues, Percival relies on Web Workers, a standard
browser technology, to run compiled Datalog queries in a sandboxed envi-
ronment on separate operating system threads. Input data from dependent
relations is sent to the worker through a channel, and the results from
evaluating the compiled program are sent back after execution is finished.
Furthermore, errors are propagated back up to the user interface in real
time, and worker threads are terminated on demand from the main thread
in case of stale dependencies.

It should also be mentioned that Plot cells receive the same reactive treat-
ment as Datalog evaluation, and they are also included in the dependency
graph as sink nodes. This is what allows graphs to update in real time
as their source relations are changed. It is particularly important to run
Plot cell code in web workers because they directly include user-provided
JavaScript functions, rather than single expressions. To allow libraries
like D3 to run in a browser context, the plot worker patches its global
document object model (DOM) with a lightweight virtual implementation. Specifically, Percival

uses the Domino
library for a virtual
DOM.8.4 data analysis demo

The easiest way to experience Percival is by example. An interactive demo
showing how all of these pieces fit together to work on a real-world dataset
is available online at the project website, https://percival.ink/. This
notebook runs completely in the browser, deterministically regenerating
its outputs from only the saved source code in under a second. For the

https://developer.mozilla.org/en-US/docs/Web/API/Web_Workers_API
https://github.com/fgnass/domino
https://percival.ink/
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sake of being self-contained, we reproduce the main demo in the following
two sections of this text. The outputs of each cell are shown above the
code, as in the web interface.

8.4.1 Exploring airport data

All data analysis starts with data. For the sake of this demonstration,
consider the airports.csv file from vega-datasets, an open-source reposi-
tory of example datasets. After loading this file into Percival, it forms an
airports relation with the following structure.

Notice that this dataset contains several thousand rows, which would be
difficult to ergonomically load and manipulate within a typical graphical
spreadsheet application. It also has several types of data, in both numerical
and textual modes. An initial question to ask is: How many airports are
there within each country described by this dataset? This can be answered by a
simple query.

https://github.com/vega/vega-datasets
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There are some syntactic points above. The 1 in count[1] is an arbi-
trary expression and could be replaced with just count[] in the future.
Also, the airports(country) literal is really shorthand for something like
airports(country, iata: _, name: _, city: _, ...), where all of the
other named fields are ignored. This allows the rule to bind to all unique
countries in the dataset.

With this aggregate query, Percival is able to compute the count statistics
of airports by country and stores that within a new table. There is an auto-
matic dependency as well, so whenever airports changes, this cell will be
invalidated and rerun to compute the new value of airports_per_country
as well. Looking at the outputs, it seems like all but 4 of the airports are
in the United States. The next step would be to filter airports within the
United States and reduce to only 3 columns that are relevant for analysis
at the moment.

After this query, the cleaner us_airports relation can be queried to find
aggregate statistics for number of airports by state. It’s also easy to make
a simple, reactive line plot visualizing the results of the query.
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In this exploratory visualization, we can make some immediate conclu-
sions about the data. It seems like most states have between 0-100 airports,
with a few outliers having 200-300 airports. This makes sense, given that
some states are much smaller than others, and even between states of
the same size, population density can be very different! Notice how to
arrive at this conclusion, the notebook combines the use of Datalog as a
declarative data query tool (to perform transformations: aggregates and
filtering) and an integrated third-party declarative plotting library.

8.4.2 Joins with census data

Although we could continue to explore the current dataset and gain more
understanding for how the data is structured, at some point it is natural to
ask questions that require other sources of data as well. For example, how
does the number of airports compare to the land area of the state or the
human population? This is a common instance of a pattern in declarative
data analysis where multiple sources are combined, often using different
transformations and origins, to arrive at a desired result.
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Percival supports pulling data from multiple sources transparently
within its Datalog query syntax. It also can track reactive dependencies
through its execution model. To demonstrate this, we first load state
abbreviations, areas, and population data from three external sources with
minimal prior data cleaning.

This data can be loaded easily but doesn’t start out in a clean for-
mat. For example, the state_areas table has full state names, while the
state_population table is grouped by two-letter abbreviations. Also, the
state_population table has data fields for multiple years and age groups,
which might be more than we might need for a basic analysis. The pro-
grammer must filter and transform this data to effectively use it. Next, we
compute the population, land area, and number of airports in each state.
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Unlike most imperative data cleaning workflows, this query was not
destructive in any way, as none of the original datasets were mutated. It’s
also very easy to take a specific slice of the population dataset by simply
specifying the values ages: "total" and year: 2013 to filter the table by
two columns. The block finishes with a simple Datalog clause to match
state names with their abbreviations, which would otherwise be more
complex in imperative code.
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The final cell of this example visualizes the results of the aggregate
query within a scatter plot. The labeled column-based tabular relation
syntax lends itself well to modern declarative plotting grammars, as shown
above, where the four fields named population, count, area, and state

are each manifested through different visual components such as color,
location, size, and text. This makes it possible to express complex plots
using the same reactive interface.
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E VA L UAT I O N O F P E R C I VA L

In this section, we evaluate Percival as a language. Our prototype aims
to verify two principal aspects: first, that the language is reasonably fast
enough for data analyses, although not necessarily the fastest method, and
second, that it is expressive enough to comfortably manipulate data and
answer common exploratory questions.

9.1 performance benchmark

To check that Percival executes reasonably quickly, we’ll run a performance
microbenchmark, using the same “graph walk” program described in
Section 7.1.

Note that walking graph data structures is not a common data analysis
program, and furthermore, Percival is based on web technologies and
compiles to JavaScript rather than directly to optimized Rust or C++ code.
It also uses less efficient immutable data structures while in this current
prototype. However, the comparison still should be done, as it verifies
that the speed is reasonable and asymptotically consistent. The results are
shown in Table 9.1.

As seen in the table, the Percival prototype is significantly slower than
interpreted Souffle, since it runs within web browsers and makes liberal
use of JavaScript. However, the slowdown is within only approximately an
order of magnitude of difference, and that only shows up for larger inputs
involving around a billion computations (since the graph walk program
is O(n3)), which is more than in most data analyses that the prototype is
targeted towards.

This indicates that Percival in its current prototype stage is not well-
optimized yet, and further work could be done to make it faster. However,

nodes (n) souffle (i) percival slowdown

32 11.8ms 9.67ms 0.8×
128 32.3ms 89.6ms 2.8×
512 1.00 s 7.96 s 8.0×
1024 7.54 s 89.8 s 12×

Table 9.1: Relative speed of Percival on the graph walk benchmark.
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for the intended use case of interactive data visualizations, computations
that take less than 100ms have an effectively imperceptible update delay,
and this has been the case for the data analyses in our example notebooks
for Percival so far. We omit further performance benchmarks to leave
room for WebAssembly-based explorations in the future, since the current
prototype’s speed is reasonable but not competitive.

9.2 expressiveness benchmark

Next, we will see how the Percival language is able to handle common
tasks from the expressiveness benchmark of [5]. This is a benchmark of
tabular data analysis problems solved in various programming languages
and domain-specific language systems for the purposes of comparison.
It’s useful to see how these problems would be solved in Percival.

The benchmark has 15 problems divided into 6 categories: aggregation,
joins, strings, first-order logic, time series, and graphs. For the sake of
brevity, we will solve the first problem in each category. The first problem
is to find the continent with the highest average population by country.
This can be solved using two cells in Percival.

average_population(continent, value) :-

countries(continent),

value = mean[population] { countries(continent, population) }.

highest_population(continent) :-

max_population = max[value] { average_population(value) },

average_population(continent, value),

`value === max_population`.

This query shows how you can compose aggregates together to form a
more complex query. However, it would have been simpler to express this
query if Percival had support for SQL-like LIMIT and ORDER BY clauses, as
then the second aggregate would not have been necessary.

The second problem is, given a table of actors and of directors, to find all
the directors of movies that Tom Hanks starred in. The solution is simple
to express in Datalog.

tom_hanks(director) :-

actors(actor: "Tom Hanks", movie),

directors(director, movie).

The third problem is to convert the string value in each row of a table to
a number, removing commas if the format column is a specific string, and
otherwise removing underscores. To express this in Percival, it’s easiest to
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just rely on an embedded Javascript snippet, since conversions like this
are exactly what general-purpose scripting languages designed for.

strings_to_numbers(n) :-

numbers(format, value),

n = `Number(value.replace(
format === "under_sep" ? /_/g : /,/g, ""))`.

The fourth problem is to find all buyers of food that ordered every food
item at least once, listed in a separate table by ID. This rqeuires two cells
(strata) and makes use of counts to check that the buyer ordered every
food item.

orders_unique(buyer, food) :- orders(buyer, food).

all_purchased(buyer) :-

orders_unique(buyer),

num_purchased = count[1] { orders_unique(buyer) },

num_total = count[1] { food() },

`num_purchased === num_total`.

The first rule in this program may seem confusing at first, but it is removing
the id column from the orders table to only filter by unique orders from
each buyer for a given food item. This would not be necessary if there was
a count_unique aggregate in the language.

The fifth problem asks to compute 7-day rolling averages within a time
series of data points. This is quite concise in Percival.

rolling(end_time, average) :-

data(time: end_time),

average = mean[x] {

data(time, x),

`end_time - 7 < time && time <= end_time`
}.

Finally, the sixth problem is transitive closure in a directed graph, re-
turning all vertices reachable from a given vertex.

reachable(node) :- query(source: node).

reachable(node) :-

reachable(node: prev),

graph(source: prev, target: node).

9.3 discussion

Percival is currently a prototype and offers significant room for perfor-
mance optimization. For instance, the slow immutable data structure li-
brary could be implemented in WebAssembly instead of JavaScript, which
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would greatly reduce overhead during semi-naive evaluation loops. Fur-
thermore, the entire Percival compiler could target WebAssembly rather
than JavaScript, potentially bringing the system closer to native Datalog
execution speeds.

The expressiveness benchmark demonstrated that Percival is effective at
solving various non-cherry picked problems, which was the original goal.
Logic programming is not usually applied to such tabular data analysis
tasks and certainly not in an interactive notebook environment. Percival
shows that it is possible to fit Datalog as the core of a query language for
data exploration tasks.

However, the expressiveness benchmark also demonstrated that Percvial
still felt awkward in some areas. Continued iteration would further refine
the language. For example, the syntax for aggregation and labeled entries
in tables is verbose, and the JavaScript embedding syntax could be better
integrated into the language, since it proves quite useful as an expression
language within Percival for many of the evaluated tasks.

Additionally, requiring every cell to be an individual stratum is overly
restrictive. Percival should perform stratum splitting using strongly con-
nected components within each cell, resulting in a faster runtime that
does not force users to unnecessarily split aggregates between cells. This
is a technical limitation of the prototype that can be solved with more
implementation work. Several other core features are useful in a data
analysis system like limits, result sorting, and user-defined aggregates,
which are currently not implemented in Percival.
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C O N C L U S I O N

Throughout this thesis, we have explored the unique characteristics of
Datalog as a programming language, emphasizing its simplicity, compos-
ability, and power. We designed and implemented two systems based
on Datalog, each addressing different domains of computer science, and
evaluated their benefits and drawbacks.

In Part II, we presented Crepe, a high-performance Datalog imple-
mentation embedded within the Rust programming language. By deeply
integrating Datalog with the host language, Crepe enables seamless cross-
language function calls, significantly improving the speed, ease-of-use,
and expressiveness of the language for integrated queries. We showcased
the real-world usage of Crepe through various open-source projects and
evaluated its performance, where it was measured to be faster than com-
piled Souffle for an embedded workload and very close to the performance
of Datafrog, a low-level engine.

In Part III, we introduced Percival, a novel language and reactive note-
book environment designed for data analysis and visualization using Data-
log. This experimental application demonstrates the potential of Datalog in
the domain of exploratory data analysis, offering a tangible, reproducible,
and shareable platform for data-driven insights. While Percival remains a
prototype with much room for improvement, it highlights the potential of
Datalog for addressing a broader spectrum of applications.

Programming languages serve as a bridge between human thought
and machines. Effective language design provides mental frameworks
that allow programmers to organize their thoughts and focus on the
relevant aspects of a problem. Computation is a universal concept, and
well-designed tools can facilitate ambitious pursuits by drawing users into
a creative flow, balancing both the expressiveness of human thought and
the efficiency and robustness of machine execution.

Working on Crepe and Percival illuminates a multifaceted perspective
on how people think when they write software with a logic programming
language. By examining both the big picture and individual usage patterns,
we can discern common themes and challenges in embedded language
design. Crepe is already used in production and could benefit from addi-
tional features, such as aggregation and more advanced join optimization
strategies. Percival, as a prototype, requires significant development to
reach its full potential, but we are already able to see how Datalog can
lend itself to exploratory data analysis tasks.
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In conclusion, the design and implementation of embedded logic pro-
gramming systems in this thesis has provided insights into the potential
of language design for various domains. By pushing the boundaries of
Datalog’s applications, we hope to contribute to a broader, unified under-
standing of how people effectively communicate with computers, paving
the way for future advancements in programming languages and tools
that foster creativity, productivity, and innovation.
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