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Abstract. Here, we describe the problem of maximizing revenue in single-bidder auctions,
where the valuation of a bidder is drawn randomly from some known distribution. This is a
well-studied problem, beginning with [9], which studied auctions with a single item. In that
case, the optimal auction is straightforward; the seller posts a single take-it-or-leave-it price.
However, the problem gets much more complicated when considering the case of multi-item
auctions (even for two items with independent value distributions). For a long time, there
was little progress in finding the optimal mechanism, until [3], which used LP duality to
show that optimal mechanisms can be very complicated in some cases. At the same time, a
large branch of economics emerged that was focused on achieving simplicity in mechanism
design. We look at a few of these approaches, most notably those in [5], [2], and [6].
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1. Introduction

In mechanism design, an important problem (and arguably the most important problem) is
to maximize revenue for the seller of a set of objects. In this paper, we focus on mechanisms
with a single buyer. A result by Myerson ([9]) shows that in the case of a single-item
auction with a buyer whose valuation is drawn uniformly from [0, 1] (but whose exact value
is unknown to the seller), the optimal auction mechanism that maximizes the seller’s profits
is a take-it-or-leave-it offer at a price of 1/2.

This is the simplest case, with exactly one good. Logically, it must also be true that if
there are two goods, and a buyer’s valuation is drawn i.i.d. from [0, 1] for both goods, then
the optimal mechanism should be to sell each of them independently at a price of 1/2, right?
Wrong!

While the revenue-maximizing mechanism is quite complicated, consider for example the
mechanism that sells both goods combined at a price of 3/4. The probability that the
valuation is above 3/4 is 23/32. This leads to an expected revenue of 69/128, which is larger
than 1/2.

The fact that selling the items together achieves a better result than separately, even when
the items’ prices are independent, is significant. Finding the optimal mechanism’s revenue
(even for this case) turns out to be extremely challenging. The optimal mechanism (from
Gonczarowski [5]) is to provide two options:

(1) Buy any single item for a price of 2/3.
(2) Buy both items for the combined price of (4−

√
2)/3.

This mechanism is substantially more complicated than one may have expected. Although
it does not involve selling probabilistic lottery tickets for items, or infinite menus, it still
involves a selection from multiple options, as well as bundling several items together. This
suggests that even in the simplest case of i.i.d. uniform buyer price distributions, there are
very complicated optimal mechanisms.

In fact, [4] shows that for some two-item auctions, the revenue-maximizing mechanism
requires using infinitely many choices, and some optimal constructions require probabilistic
choices (e.g., you can bid 0.4 for a 0.7 chance at receiving an item).

Being perfect is hard, and in cases where infinitely many choices are needed, is essen-
tially impossible. So what can we do? A recently developing field of economics focuses on
simplicity, a parameter whose need is becoming readily apparent in an ever more complex
world. Myerson’s auction is very simple. What are some other simple mechanisms we can
try? We can try selling each item separately, or sell all the items together in a bundle. [2]
shows that one of these two mechanisms is always guaranteed to generate at least 1/6 the
optimal revenue. However, in practical applications, even this result about optimality up to
a constant factor is slightly unsatisfying. What merchant was ever satisfied with 1/6 of the
optimal revenue?

To this end, [3, 4] show ways of obtaining true optimality via a linear programming
approach. [5] uses this duality to prove lower bounds on the complexity of a mechanism
that is needed to obtain the optimal revenue minus ε. Another paper, [1] proves an upper
bound on the complexity of a mechanism that is needed to obtain all but ε of the maximum
revenue by an explicit construction; these bounds are sufficient to prove an exact bound on
the communication complexity of any mechanism which obtains all but ε of the maximum
revenue.
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2. Model

For any simply connected subset S of Rn, we define ∆(S) to be the set of all probability
distributions supported on S.

We describe a model of the single-bidder mechanism design problem. An auctioneer has
a selection of n goods that he wants to sell, and he wants to design a mechanism that
maximizes his revenue (as the goods have no cost to him). He has a single bidder, whose
valuations for the items are drawn from a distribution D ∈ ∆([0, 1]n). The auctioneer’s goal
is to maximize his expected revenue from selling the goods, given control over the pricing
mechanism. The bidder’s objectives are to maximize his utility, which is linear in his value
of the items (i.e., he is risk neutral; a lottery ticket that has value v with probability 1/2 and
value 0 with probability 1/2 has overall value v/2). In effect, the bidder’s strategy places
constraints on the auctioneer’s mechanism design.

The mechanism plays out as follows. First, the bidder is given confidential knowledge of a
vector z ∈ [0, 1]n ∼ D of his valuations for each item, drawn according to a public probability
distribution. He reports some valuations z′ to the auctioneer, who in turn gives the bidder
a bundle: consisting of certain probabilities x(z′) ∈ [0, 1]n of obtaining each item, as well
as price p(z′) ∈ R that is charged in total. Since the bidder’s utilities are additive over the
objects and linear, the bidder’s utility is given by

u(z, z′) = x(z′) · z − p(z′),
where x(z′) is the bundle (a vector of probabilities denoting the probability of receiving the
object), z is the valuation (a vector containing the values of each of the objects), and p(z′)
is the price that the bidder pays.

We restrict ourselves only to mechanisms that are incentive compatible and individually
rational, meaning that the bidder will always be incentivized to report his true valuations
for each item, and he will always gain positive expected utility from participating in the
mechanism. This means that for all z and z′,

x(z) · z − p(z) ≥ max{x(z′) · z − p(z′), 0}.
By the revelation principle in mechanism design, these incentive-compatible direct mecha-

nisms are suitable to maximize revenue. Consequently, all of these mechanisms boil down to
a single kind: the auctioneer describes a menu of bundles, which each include n probabilities
of receiving the individual items, as well as the overall price of the bundle. The bidder selects
the bundle which gives them the most expected utility.

However, in the rest of this chapter we will frequently find it useful to move between these
two descriptions of the problem: one in terms of discrete menus of bundles, and one in terms
of an allocation function x (hence allocation rule) and a price function p (hence price rule).
In general, it will be easier to do calculations with the menu interpretation, and simpler to
express the duality framework with the utility function u(z) = x(z) · z − p(z).

In what follows, suppose that we are given a (possibly multidimensional) distribution
with cumulative distribution function F and density function f , supported on Rn. Many
times we will consider the case where the marginal distributions F1, F2, . . . Fn for each item
are independent; we refer to this as the independent setting. Let OPT(F ) be the maximum
revenue that one can obtain in a single-bidder auction given a buyer whose value distribution
follows F . Also, let REV(F,M) be the revenue obtained by mechanism M = (x, p) on the
distribution F .
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3. Simplicity

Before we attempt to achieve all but ε of the optimal revenue, we can explore how close we
may get using very simple mechanisms. If simple mechanisms can yield revenues exceeding
OPT(F )− ε, we would not require more complicated menus. In this section, we focus on the
independent setting.

Two broad types of simple mechanisms are considered in [2]:

(1) Grand-bundling mechanisms, where the a single bundle of all the goods is offered
together. Denote the optimal revenue from this case as OPTG(F ).

(2) Posted-price mechanisms, where each item is assigned a price, and buyer is allowed
to buy each separately. Denote the optimal revenue from this case as OPTP(F ).

These mechanisms are both simple enough to be easily analyzed. One result is that both
of these can be arbitrarily bad compared to the optimal mechanism. To illustrate this, we
show, in the following two lemmas, that both OPTG and OPTP can be arbitrarily bad
compared to each other.

Lemma 3.1 ([6]). For any ε > 0, there exists F in the independent setting so that

OPTG(F )

OPT(F )
≤ OPTG(F )

OPTP(F )
< ε.

Proof of Lemma 3.1. Consider n goods, so that good i has value 2i with independent prob-
abilities 2−i from the buyer and zero probability otherwise.

The posted price mechanism here sells each good for 2i, which gives an expected revenue
of n. This is because selling for any lower price would lead to lower value with the same
probability, while selling for a higher price would make the mechanism no longer individually
rational. On the other hand, to analyze the grand bundle mechanism (selling all the goods
together), suppose that they are sold at a price p. Observe if that value ‖z‖1 of the bundle
is worth at least p, there must be a good of value at least p/2. By a union bound, the
probability that the value of the bundle is worth more than p is at most

2−blog2(p)c+1 + 2−blog2(p)c + 2−blog2(p)c−1 + · · · < 4

p
,

implying a maximum revenue of 4. Therefore, by increasing the number n of goods, we can
construct distributions F such that

OPTG(F )

OPTP(F )
is arbitrarily small. �

Lemma 3.2 ([6]). For any ε > 0, there exists a valuation distribution F so that

OPTP(F )

OPT(F )
≤ OPTP(F )

OPTG(F )
< ε,

even if we restrict F to be the product distribution of i.i.d. random variables.

Proof of Lemma 3.2. Note that a distribution with finite expected value will be difficult to
make work here, because OPTG(F ) will tend to concentrate around the expected value of
the sum ‖z‖1 by the law of large numbers. Instead, we consider the distribution which might
be the worst possible for the posted price mechanism: the equal revenue distribution, where
any posted price yields the same revenue for that item. In this case, while the grand bundle
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benefits from independent concentration, the posted-price mechanism does not. Formally,
consider the distribution on the price of the first good, z0, with cumulative distribution
function F given by

F (z0) =

{
1− 1/z0 z0 ≥ 1

0 z0 < 1

Observe that this distribution has a very thick tail. For a single item in this distribution, if
it is sold any price p ≥ 1, then the expected revenue is given by

p · Pr(z0 > p) = p · (1− F (p)) = 1.

Thus, the expected revenue from the optimal posted-price mechanism on this distribution is
n given n independent and identically distributed items at this valuation.

Now, given i.i.d. valuations X1, . . . , Xn ∼ F , we want to show that Sn := X1+X2+. . .+Xn

achieves high values (in particular, ω(n)) with constant Θ(1) probability. This would allow
a grand bundle mechanism priced at that value to achieve a better asymptotic expected
revenue as n increases. However, this will be hard to do with central limit theorem or law
of large numbers, since the expected value of the distribution of Xi is∫ ∞

1

xf(x) dx =

∫ ∞
1

x

(
1

x2

)
dx =∞.

Instead, we will use Chebyshev’s inequality to show that Sn is Ω(n lnn) with constant prob-
ability. Since the variances of Xi are also not defined, we clip off the tails at some value
M > 1 and take instead X ′1 = min(X1,M). Then, the expected value of X ′1 is

E[X ′1] =

∫ M

1

xf(x) dx+M · 1

M
= lnM + 1,

and the variance is
Var[X ′1] = 2M.

By the additivity of variances of independent random variables, the sum of X ′i has a mean of

n lnM + n and a standard deviation of
√

2Mn. Letting M = n, note that this distribution
will with nonvanishing probability have a sum greater than n lnn − 4n by Chebyshev’s
inequality. Specifically,

Pr(Sn < n lnn− 4n) < Pr(S ′n < n lnn− 4n) < Pr(|S ′n − (n lnn+ n)| < 5n) =
2n2

25n2
=

2

25
,

and thus the expected revenue is bounded below by 23
25

(n lnn− 4n) = Ω(n lnn). �

Reflecting on what makes these mechanisms arbitrarily suboptimal, the posted price mech-
anism loses to the grand bundling mechanism because when n is large and the variables are
i.i.d., as the sum of all the items as a whole tends to be concentrated around the expected
value by the law of large numbers. Intuitively, the grand bundling mechanism helps reduce
risk for the seller. This trend even holds when the distributions, such as above, have infinite
expected value and undefined variance (and in fact, only gets stronger).

Now, here’s a very surprising theorem that shows that one of our two simple mechanisms
is always within a constant factor of the optimal mechanism:

Theorem 3.3 ([2]). We have that

6 ·max(OPTP(F ),OPTG(F )) ≥ OPT(F )
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This is a surprising result because it’s quite counterintuitive that while either mechanism
can give arbitrarily bad approximations, the better of the two will always be within a constant
factor of the optimal.

Proving this theorem is difficult, but the main idea is to break the distribution into a
“core” and a tail, where the core contains almost all of the probability mass, and the tail
contains the points of large revenue. We will show a specific result about this, which we call
the core decomposition lemma.

However, before we can prove the core decomposition lemma, we need a few intermediate
results. Consider arbitrary distributions F, F ′ each supported on Rk for some dimensions k,
and define VAL(F ) to be the expected valuation of the buyer on the entire distribution. We
have the following bound on the optimal revenue of a mechanism.

Lemma 3.4 ([6]). If F is independent from F ′, then we have that

OPT(F × F ′) ≤ VAL(F ) + OPT(F ′).

Proof. Consider a mechanism M which achieves the optimal revenue on F × F ′. We will
use this to construct a mechanism on F ′ that has expected revenue at least OPT(F ×F ′)−
VAL(F ), which will imply the lemma.

Consider M ′, the restriction of M to elements of F ′, where a mechanism function (x, p) is
restricted to

x(z) 7−→ x(z)|F ′ ,

p(z) 7−→ p(z)− z · x(z)|F .
In particular, for each element fi in F that is included in the bundle with probability xi,
we discount the price of the restricted bundle in the new mechanism M ′ by the sum the ex-
pected valuation xizi. This mechanism retains the IC and IR conditions, and on expectation
decreases the revenues of the auctioneer by

E[z · x(z)|F ] ≤ VAL(F ),

which yields the result. �

The key idea in the above was discounting the bidder
∑

i xizi in money. We could also
have tried discounting the the bidder by exactly

∑
i zi in money, but that might have broken

incentive compatibility.
We now prove another lemma, which suggests that breaking up a distribution into many

pieces makes it easier to optimize revenues. Intuitively, the reason this is true is that breaking
up a distribution into pieces and optimizing revenues over those distributions allows you to
specialize to each piece.

Lemma 3.5. Given some finite set A, assume that for all a ∈ A, we have pa ∈ R and
fa : D → R, where D is the support of F , such that

f(x) =
∑
a∈A

pafa(x).

In other words, f is a mixture of distributions fa. Then,

OPT(F ) ≤
∑
a∈A

pa OPT(Fa).

Proof. Let M be any mechanism on F . Note that

REV(Fa,M) < OPT(Fa),
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so we have ∑
a∈A

pa REV(Fa,M) ≤
∑
a∈A

pa OPT(Fa).

This implies that

REV(F,M) ≤
∑
a∈A

pa OPT(Fa),

as desired. �

Now, our next goal is to prove a core decomposition lemma that is a key step in proving
Theorem 3.3. For each of the items i = 1, 2, . . . n, let ri be the revenue attained by an
optimal single-item posted-price auction for that individual good. Let ti ≥ 1 be a set of n
parameters, and define the core of the distribution to be the product of the n intervals

FC
∅ =

n∏
i=1

[0, tiri].

Intuitively, the idea behind this definition is that for any mechanism, the probability that
a single item i “contributes” (in a vague sense) more than tiri to the revenue is at most
1/ti. We can now introduce some notation to formalize the core decomposition idea that we
stated earlier:

• Let pi be the probability that the bidder’s valuation zi for item i is greater than tiri,
the endpoint of the corresponding interval in the core.
• Let FC

i be the core of item i, or the conditional distribution of the buyer’s valuation
zi given that zi ≤ tiri.
• Let F T

i be the tail of Fi, which is the conditional distribution of zi conditioned on
zi > tiri.
• A is an arbitrary subset of the n items being sold, which we usually take to be the

set of items whose valuations for the bidder are in the tails.
• F T

A : A is a subset of items, and F T
A is a product distribution equal to

∏
i∈A F

T
i

• FC
A : A is a subset of items, and FC

A is a product distribution equal to
∏

i 6∈A F
C
i .

• FA: FC
A × F T

A .
• pA represents the probability that the bidder’s valuation is in the support of FA.

With this notation, we are now ready to prove the core decomposition lemma (the main
lemma in [2]), which is the key step in proving Theorem 3.3.

Lemma 3.6 (Core Decomposition Lemma).

OPT(F ) ≤ VAL(FC
∅ ) +

∑
A⊆{1,...,n}

pA OPT(F T
A ).

Proof of Lemma 3.6. In light of the above, this quickly follows. We know that

OPT(F ) ≤
∑
A

pA OPT(FA) ≤
∑
A

pA(OPT(F T
A ) + VAL(FC

A )),

and the result follows by using the bound

VAL(FC
A ) ≤ VAL(FC

∅ ).

�
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This concludes the setup and proof of the core decomposition lemma. For brevity, we do
not present a complete proof of Theorem 3.3; this can be found in [2]. However, we will
provide a rough sketch of the argument.

To go from Lemma 3.6 to Theorem 3.3, we need to choose the values of ti correctly, after
which these terms in the core and tails will be reasonable to bound. If the values of ti are
all relatively large, there generally will not be any values in the tail, which will allow us to
bound them. The final technical step is to show that a grand bundling approach provides
most of the revenue in the core, while a single item approach provides most of the revenue
in the tails.

Note that one difficulty this approach faces is that if the values of ti are all the same,
then the core becomes highly skewed. Thus, we end up choosing ti = cr/ri, where r is the
maximum revenue obtainable by a grand bundling mechanism. This makes tiri = cr for all
i, so the core is a cube.

This concludes our discussion, setup, and sketch of the proof for Theorem 3.3. A natural
next question would be if more sophisticated analyses could prove a tighter bound on the
efficacy of this simple mechanism. However, it turns out that this strategy can only go so
far, as the following lemma shows.

Lemma 3.7 ([2]). There exists a distribution F for which

2 ·max(OPTP(F ),OPTG(F )) ≤ OPT(F ).

Thus, this simple mechanism, while producing asymptotically optimal results, does not
provide an arbitrarily close approximation scheme.

4. Duality

In this section, we attempt to find, in a general setting, the mechanism that extracts the
maximum value.

Recall from the revelation principle that any such mechanism can be described as follows.
The bidder announces his values z. Then a mechanism M = (x, p) consists of an an allocation
rule x(z) providing probabilities of receiving each item in the bundle, as well as a price rule
p(z) that represents the posted price for the bundle. The mechanism M provides the buyer
with u(z) = x(z) · z − p(z) in utility.

We wish to maximize the expected revenue obtained by the seller, which is the integral∫
p(z)f(z) dz

of the price rule. However, we cannot simply choose any price rule in this optimization
problem. For an extreme example, the price rule p(z) = 100 and x(z) = 0 is not valid.
There is simply no reason for the buyer to participate in this mechanism, where he pays 100
units of money for a bundle of zero goods. In the language of game theory, this mechanism
is not individually rational. We have to find a way to encode individual rationality and
incentive compatibility in the language of the price rule and allocation rule.

In terms of u, these expressions become slightly more palatable. Incentive compatibility
is true if and only if u is non-decreasing, convex, continuous, and ∇u(z) ∈ [0, 1]n (in other
words, 1-Lipschitz), a result shown in [7].
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We can now give the expected revenue as an integral that we wish to maximize, expanding
it using the expression for u as∫

p(z)f(z) dz =

∫
(x(z) · z − u(z))f(z) dz.

We can now calculate that x(z) = ∇u(z) by the envelope theorem, so we want to maximize∫
(∇u(z) · z − u(z))f(z) dz.

By standard multivariable calculus (c.f. [3]), we can rewrite this as∫
u(z)(−∇f(z) · z − (n+ 1)f(z)) dz.

Thus, we want to take a function u(z) that maximizes this value. Here, let d0 = 0 be the
origin. Then, we can split D = supp(F ) into regions of positive and negative contribution
to this integral by defining two sets:

X = {z ∈ D | −∇f(z) · z > (n+ 1)f(z)} \ {d0},
Y = {z ∈ D | −∇f(z) · z ≤ (n+ 1)f(z)} \ {d0}.

Using the expressions above, we can define density functions µXd (x) = −∇f(x)·x−(n+1)f(x)
and νYd (y) = (n + 1)f(z) + ∇f(y) · y. By the Lebesgue-Radon-Nikodym theorem, we can
define unique measures µX and νY with these densities. Therefore, we want to find a function
which maximizes ∫

X
u(x)µXd (x) dx−

∫
Y
u(y)νYd (y) dy.

At this point, this problem becomes an optimization problem, where we want to find a
utility u(z) that maximizes the objective. X and Y can both be calculated purely from the
density function.

We will actually slightly “patch” X by extending it with the origin d0 as an extra element,
such that µX0({d0}) = 1. Because µX (X ) − νY(Y) = −1 (c.f. [3]), working with X0 and Y
will give us the nice property that µX0(X0) = µY(Y).

However, it will in general be very difficult to solve this type of problem. Instead of at-
tempting to optimize given the convexity and 1-Lipschitz constraints on u, which are natural
but hard to optimize over, we use a different type of constraint. Define a “cost function”
c : X0 × Y → R by summing over the differences of corresponding vector coordinates,

c(x, y) :=
n∑
i=1

max{xi − yi, 0}.

Note by the 1-Lipschitz condition and the monotonicity mentioned earlier, u(x) − u(y) ≤
c(x, y). If we optimize the objective under this weaker constraint, and the optimizing function
also happens to satisfy the original constraints of incentive compatibility and individual
rationality, we are done. In fact, [4] shows that optimal solutions for this cost constrain
essentially always satisfy the original constraints.

Now, to bound the objective function subject to cost constraints, we use a coupling of
finite measures. Let Γ(µX0 , νY) be the set of joint distributions γ(x, y) with marginals equal
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to µX0 and νY . Then, a coupling argument tells us that the objective function satisfies

OPT(F ) =

∫
X0×Y

u(x)− u(y) dγ(x, y) ≤ inf
γ∈Γ(µX0 ,νY )

∫
X0×Y

c(x, y) dγ(x, y).

This is exactly an optimal transport problem [8], which here is expressed as the dual
of our optimization problem. This is how we can equate, via weak duality, the revenue
maximization problem to the optimal transport problem.

5. Menu Sizes

In this section, we move on to an analysis of the simplicity of arbitrarily close approxima-
tion procedures for optimal mechanisms. Using the duality framework described in the past
section, we construct a particular example of an auction that is hard to approximate with
using a finite menu size. This will provide a general lower bound on the simplicity (menu
size) of approximation algorithms of a given error threshold. The main result is stated below.

Theorem 5.1 ([5], Theorem 2). There exists C(ε) = Ω (1/ 4
√
ε) and a distribution F ∈

∆([0, 1]), such that for every ε > 0 it is the case that REV(F × F,M) < OPT(F × F ) − ε
for every mechanism with menu-size at most C(ε).

In other words, if we want to come within an ε of the optimal revenue, we need at least
Ω(1/ 4

√
ε) items on the menu. Before we prove why Ω(1/ 4

√
ε) items are needed, let’s ask the

question: why does this number scale exponentially with log(1/ε)? A reasonable explanation
is that with any finite menu, the decision boundaries that the buyer makes will appear to be
piecewise linear. On the other hand, if the optimal decision boundaries are very “round”,
it may be very difficult to approximate it well with lines. This forms the intuition for the
proof of the complexity lower bound.

A key step in proving this result will be the notion of strong duality. Consider some
problems p and d, which are primal and dual. Let op and od be real-valued functions defined
across Sp and Sd respectively. The primal is a question of maximizing a function op over a
set Sp, and the dual is a question of minimizing a function od over a set Sd. Then, a weak
duality relation states that for all sp ∈ Sp and sd ∈ Sd,

op(sp) ≤ od(sd).

For example, we showed in the last section that the mechanism design (p) and optimal
transport (d) problems are weakly dual, subject to appropriate constraints.

A strong duality theorem, on the other hand, states that in addition to a weak duality
relation, there always exists a pair (ŝp, ŝd) so that

op(ŝp) = od(ŝd).

In other words, the duality gap infsd od(sd) − supsp op(sp) is zero. Importantly, note that
finding a pair (ŝp, ŝd) immediately solves both the primal and the dual. The result of [4] tells
us that not only is the revenue maximization problem weakly dual to a problem in optimal
transport, it is also strongly dual.

What we want to show here, then, is that for a certain distribution (in this case, F ∼
Beta(1, 2)), thinking about the dual will allow us to show that with a limited number of
menu items, we are very far away from finding the optimal solution (in particular, we come ε
short of maximizing the expression). As we’ve shown above, for any coupling γ ∈ Γ(µX0 , νY)

10



(especially the one that minimizes the right-hand side), we have∫
u dµX0 −

∫
u dνY ≤

∫
[0,1]2×[0,1]2

(u(x)− u(y)) dγ(µX0 , νY)

≤
∫

[0,1]2×[0,1]2
c(x, y) dγ(µX0 , νY).

For the strong duality, we need complementary slackness conditions to hold: in this case,
c(x, y) = u(x)−u(y) almost everywhere on γ. What we want to do now is to show that very
often, u(x)− u(y) < c(x, y) by a large margin. We can calculate that dµX0 − dνY is

f(x1)f(x2)

(
1

1− x1

+
1

1− x2

− 5

)
dx1 dx2.

where f(x1) and f(x2) are the density functions of Beta(1, 2).
Consider the graph of γ(x, y), showing how x and y are coupled. We will not describe

the coupling in full detail, but we outline its important properties. In the region given by
R = [0, x′] × [0, 1], the coupling sends points in A downwards, and in Z only sends mass
from 0 to other points in Z. Some mass here will be transferred outside of region R.

Figure 1. Diagram of the coupling on [0, 1]2, from [4].

The idea in the problem is that u(x)−u(y) will often have a value which is much less than
c(x, y). In particular, in the above graph, equality holds exactly because u(x)−u(y) = c(x, y)
for all values of x, y that are coupled under γ(x, y). In the above, in region A the second
item is always allocated to the bidder, and in region Z the second item is never allocated
to the bidder (in fact, no items are). The boundary curve S between A and B satisfies the
equation

x2 =
2− 3x1

4− 5x1

.

Note that this boundary is nonlinear.
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Now, consider the boundary curve T , which is the analogue of S formed by the finite-
length menu mechanism. One potential problem that can emerge here is that the allocation
formed by our menu may be probabilistic in nature. Thus, let T be the smallest point for
which the probability of allocating item 2 is above 1/2. Thus, define

T (x1) = inf{x2 ∈ [0, 1] | u′2(x1, x2) > 1/2}.
If we restrict our attention to a small neighborhood of the curve, we can obtain a region

where the densities are all at least −d. Then the idea of the problem is now that T must δ
away from S at several points. To state this theorem formally requires tools from differential
geometry. Specifically, we state the following result (without proof).

Theorem 5.2 ([5], Proposition 5). Let S : [0, x′] → R be a concave function with radius
of curvature at most r everywhere, for some r < ∞. For small enough δ, the following
holds. For any piecewise-linear function T : [0, x′]→ R composed of at most x′/8

√
rδ linear

segments, the Lebesgue measure of the set of coordinates x! with |S(x1) − T (x1)| > δ is at
least x′/2.

Now we have the necessary ingredients to prove Theorem 5.1.

Proof of Theorem 5.1. Now, assume that T (y1) − S(y1) > δ. Let y2 ∈ (S(y1), S(y1) + δ/2)
and let x2 be so that γ̂ transfers positive mass from (y1, x2) to (y1, y2) (and moreover, this
is the only way for mass to be transferred. By the definition of T , we have

u(x)− u(y) ≤ x2 − y2 − δ/4 = c(x, y)− δ/4.
Now consider the case in which S(y1)− T (y1) > δ. Let y2 ∈ (S(y1), S(y1) + δ/2) and let x2

be so that γ̂ transfers positive mass from x = (0, 0) to y = (y1, y2). (All mass transferred to
y by γ̂ is from the point x.) By the definition of T ,

u(x)− u(y) ≤ −δ/4 = c(x, y) ≤ −δ/4.
By the technical lemma shown earlier, the set of coordinates y1 with |S(y1)− T (y1)| > δ

has Lebesgue measure at least x′/2. Therefore, the inequality originally mentioned must be
off by at least δ/4 · x′/2 · δ/2 · d, which is the density of µ (specifically dµX0 − dνY) in that
region. This is greater than ε for well chosen δ (δ = O(

√
ε
dx′

)), which allows us to conclude

and get the bound we want, as x′/8
√
rδ = O(1/ε1/4). �

6. Upper Bound

We show an upper bound on the complexity of any auction that obtains all but at most
ε of the optimal revenue. This type of result is useful because it shows that we can actually
construct an auction which comes close to obtaining the maximum revenue. In general,
when we are forced to take problems that are naturally more continuous and make them
into discrete problems, we rely on one type of trick: rounding. This type of approach has
seen numerous applications in fields of mechanism design, algorithmic game theory, and
learning theory. For example, rounding is frequently used in learning theory to discretize the
hypothesis class. However, rounding often comes with certain difficulties. “Sharp edges” can
occur, for example, when an algorithm that takes the maximum of many elements suddenly
takes a dramatically different element when each of the elements are perturbed only slightly.
An example can be seen below:

{0.4998, 0.4999, 0.5000, 0.5001, 0.5002} → {0.5002, 0.5001, 0.5000, 0.4999,0.4998}.
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Despite each individual element not changing by much, the maximum value moved from
the first element to the last element. This could create large difficulties in algorithms with
rounding that are sensitive to maxima, so we must be careful to ensure this does not affect
our algorithm. In our case, this could be dangerous because slightly perturbing the prices
along a boundary between valuations may shift the optimal bundle x(z) to a much cheaper
bundle, which could drastically hurt revenue.

In the auction problem, we take the optimal menu (which may have infinite size), and then
round each of the items on the menu to rational numbers with fixed denominators, which
are then placed on an approximate menu with finite size (because there are a finite number
of rational numbers with low denominators). In theory, this type of mechanism should come
close to the correct one, because it is “basically” the same as the other mechanism, with
values rounded. In order to state our theorem, we first introduce the McAfee-McMillan
conditions, which enforce certain “niceness” conditions on a distribution.

Definition 6.1. A distribution F ∈ ∆([0, 1]n) is said to satisfy the McAfee-McMillan con-
ditions if it has a differentiable density function f satisfying

(n+ 1)f(x) + x · ∇f(x) ≥ 0,

for every x = (x1, . . . , xn) ∈ [0, 1]n

One way to think about the McAfee-McMillan conditions is that there is no region of
space where the densities change very suddenly, in essence, that the gradient of the density
function is not large in any particular location. We now use a recently proved theorem:

Theorem 6.1 ([10], Proposition 1). For every distribution F supported on [0, 1]2 that sat-
isfies the McAfee-McMillan hazard condition (for n = 2), there exists a revenue-maximizing
mechanism M = (x, p) that has no outcome for which both allocation probabilities are in the
open interval (0, 1). In other words, the bundles x(z) for all values of z are on the boundary
of the unit square [0, 1]2.

We are now ready to state our main theorem, and we have the tools necessary to prove it.

Theorem 6.2 ([5], Theorem 4). There exists C(ε) = O(1/ε2) such that for every ε > 0
and for every distribution F ∈ ∆([0, 1]2) satisfying the McAfee-McMillan hazard condition,
there exists a mechanism M which with menu-size at most C(ε) such that Rev(F,M) >
OPT(M)− ε.

Proof of Theorem 6.2. Let M be a revenue-maximizing mechanism for F . Let btcδ be the
rounding down of t to the nearest integer multiple of δ.

Now, before we construct the rounded mechanism, we make a few observations about
the nature of the rounding process. Under a mechanism F ′ which gives the exact same
probabilities of allocation, just with adjusted prices, what conditions to we want to be
satisfied? The following is an example of something that could go wrong if we naively round
the prices.

Example 6.1. Assume that the menu has two components.

• One item to the buyer with probability 0.5 with price 1.01
• One item to the buyer with probability 0.999 with price 2.

If the buyer’s value for the object is 2, the first option gives him −1¢ in expected utility, and
the second option gives him −0.2¢ in expected utility, so he will choose the second option.
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Instead, imagine we round the menu prices, so that the item with probability 0.5 has price
1 (changed) and the item with probability 0.999 has price 2 (stays the same). Now, note
that the buyer’s decision changes to buying item 1. The utility function for option 1 is now
zero, which is higher than −0.2, and the buyer chooses option 1. Although the change in
the buyer’s utility is slight, note that the auctioneer’s revenue goes from 2 to 1, which is a
substantial cut.

The problem in this situation is that the rounding was done without any care. The
rounding should be forced to only increase the revenue of the auction (or at least only
reduce it slightly), not decrease it arbitrarily. To do this, we will also discount all the prices
by a fixed proportion 1 − ε, which we claim will ceteris paribus make the more expensive
bundles look relatively more attractive by properties of rounding.

Formally, take each item of the form (x1, x2, p) from the menu. Now, replace it with
(x1, x2, (1− ε)× bpcε2). The key idea is now akin to a respect-for-improvements result; any
item which was both much more expensive and more desirable than another item retains
these properties after we apply these operations. To show this, it suffices to prove the
following.

Lemma 6.3. Given the function f(p) = (1− ε)×bpcε2, for any p, q ≥ 0 such that p > q+ ε,

f(p)− f(q) < p− q.

Proof. Note that bpcε2 − bqcε2 < p− q + ε2. Then, it suffices to show that

(1− ε)(p− q + ε2) < p− q,
which follows because ε2(1− ε) < ε2 < ε(p− q). �

Now, suppose that p∗ is the price of the bundle chosen before applying f to the mechanism,
and f(q∗) is the price bundle chosen after applying f to the mechanism. We know that

vp − p∗ ≥ vq − q∗,
vp − f(p∗) ≤ vq − f(q∗),

by utility considerations, where vp is the value of the bundle with price p∗ and vq is the value
of the bundle with price q∗. Subtracting these, we obtain that

p∗ − q∗ ≤ f(p∗)− f(q∗),

which by the contrapositive of Lemma 6.3 implies that p∗ − q∗ < ε. Now, we can then
calculate that p∗ − f(q∗) < 2ε, implying for any valuation z received by the buyer, the
amount he pays only goes down by at most 2ε. This is also true in aggregate, so the revenue
is been reduced by at most 2ε overall.

Finally, we ask the question; how many items are now on the menu? It may appear at
first that this requires a very large number of objects, but instead note that it needs at most
4
(
1 + 1

ε2

)
. Observe that by Theorem 6.1, all of the items either have guaranteed allocations

of the first object or the second object, or have guaranteed not allocations of the first object
or second object. Within each of these, there is no reason to keep any “dominated” bundle
on the menu, so we can simply take the highest probability item with the same price, of
which there are at most

(
1 + 1

ε2

)
of after rounding, and we are done. �

With substantially more effort, one can show the following result.
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Lemma 6.4 ([6]). The menu-size required for revenue maximization up to additive ε when

selling n goods is (log n/ε)O(n)

This implies the following theorem, which neatly summarizes all of our results.

Theorem 6.5 ([5]). Fix n ≥ 2. There exists Dn(ε) = Θ(log(1/ε)) such that for every
ε > 0 it is the case that Dn(ε) is the minimum communication complexity that satisfies the
following: for every distribution F ∈ ∆([0, 1]n) there exists a mechanism selling n goods
such that the deterministic communication complexity of running M is Dn(ε) and such that
REV(F,M) > OPT(F )− ε. This continues to hold even in the independent setting.

7. Future Directions

The work in this section is original.
Inspired by the trick in the upper bound, where in addition to rounding the prices we had

to discount them, we can formulate a relaxed form of the utility-maximizing agent.

Definition 7.1 (ε-naive agents). An ε-naive agent whose valuations are z will submit valu-
ations z if for all z′ we have

x(z) · z − p(z) ≥ x(z′) · z − p(z′)− ε.

(Contrast this to the standard definition of incentive compatibility where ε = 0.)
This ε might be thought of as “a person won’t cheat the system to save a tenth of a cent”.

In practice, such a constraint may be achieved by listing prices rounded to the nearest cent
or dollar. Now, note that if we round prices up to the nearest multiple of ε, the revenues will
only increase, and an ε-naive agent will still choose the same bundles. By simply rounding
all prices by ε2, this gives us the following result.

Theorem 7.1. Assume that for an ε1-naive agent whose value distribution is F , there is a
mechanism M which attains a revenue r. Then, there exists a mechanism where the prices
are all multiples of ε2 which attains a revenue at least r for an ε1 + ε2-naive agent.

Note that while this theorem appears superficially similar to Theorem 6.2, in actuality it
is substantially stronger, as it does not assume the McAfee-McMillan conditions that the
work in Section 6 assumes.
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